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Abstract

This paper presents a new state-space framework to jointly estimate the elasticity and factor-

augmenting technical change. Technical change is specified as a smooth process that captures a long

run trend and persistent shifts during transition periods. In a simulation study, this approach out-

performs the widely applied linear and Box-Cox trend assumptions. The framework is subsequently

applied to a dataset containing 16 OECD countries. For all countries, the estimated elasticity is signif-

icantly below unity. In the long run, technical change is labor-augmenting, but with several persistent

shifts during transition periods, in particular in the 90’es and after the financial crisis.

Keywords: Factor-Augmenting Technical Change, Medium Run, Constant Elasticity of Substi-

tution, State-space Models.

JEL: C32, E25, O33.

1 Introduction

The elasticity of substitution between capital and labor is a central parameter in macroeconomic models.
It influences factors such as the long run growth rate of GDP, the effects of monetary policy, the effect of
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a technology shock on hours worked, and variations in the labor share.1 While an important parameter,
the identification of the elasticity is difficult as it requires factor price movements that are unrelated to
factor-augmenting technical change, the so-called Diamond et al. (1978) non-identification result.

The non-identification result has led researchers to impose parametric assumptions on factor-augmenting
technical change (i.e. technical change that affects the efficiency of capital and labor differently) in the
time dimension. Although many researchers have employed a linear trend assumption (Antras, 2004;
Leon-Ledesma et al., 2010; Mallick, 2012; Leon-Ledesma et al., 2015), it is known to be problematic for
at least two reasons: First, Knoblach et al. (2020) find that the main determinant of the major cross-study
difference in the estimated elasticity is the lack of incorporating a time-varying and non-linear process
of factor-augmenting technical change. Second, it has recently been shown that the labor share is best
described by having transition periods of 10-30 years, the so-called “medium run cycle”, particularly
driven by persistent fluctuations in factor-augmenting technical change (Blanchard, 1997; Comin and
Gertler, 2006; Growiec et al., 2018; Leon-Ledesma and Satchi, 2019; Charpe et al., 2020; Oberfield and
Raval, 2021). Consequently, technical change is far from constant in periods of transition and involves
several persistent periods of shifts in the average growth rate of the relative factor-augmenting techni-
cal change. This motivated a series of papers to apply a Box-Cox transformation of the time trend to
describe factor-augmenting technical change (Klump et al., 2007, 2008; McAdam and Willman, 2013;
Muck, 2017; Stewart and Li, 2018). While the Box-Cox transformation can account for accelerating,
decelerating, or constant growth rates, it cannot reproduce several persistent transition periods. When the
typical transition period is 10-30 years, several periods are likely present when studying longer samples.
Therefore, a more flexible estimation approach is needed.

In this paper, we propose a new state-space framework to jointly estimate the elasticity of substitution
and a process of factor-augmenting technical change. The framework allows for a long run trend and
several persistent transition periods in factor-augmenting technical change. A likelihood-driven approach
is applied to determine whether these periods are present as well as their persistence. The only assumption
imposed is that the process of factor-augmenting technical change has to be sufficiently smooth to not
capture short run fluctuations generated by factors such as markup variations and labor market frictions.
Hence, except for the estimation of the noise-to-signal ratio, our approach can be characterized as a
non-parametric estimation of technical change. This way, we present a framework that is less restrictive
than the widely applied linear or Box-Cox trend, which both represent a full parametric specification of
technical change in the time dimension. The approach is fairly easy to implement as an improvement
to models with parametric assumptions on factor-augmenting technical change and is made publicly
available through the statistical software program R.2 In addition to the estimation of the capital-labor

1Papers that emphasize the role of the elasticity of substitution include among many de La Granville (1989); Ky-Hyang
(1991); Blanchard (1997); Klump and de La Granville (2000); Mallick (2012); Cantore et al. (2014); Karabarbounis and
Neiman (2014); Piketty (2014); Cantore et al. (2015, 2017); Leon-Ledesma and Satchi (2019); Gechert et al. (2021); Oberfield
and Raval (2021).

2We refer readers to Kastrup et al. (2021) for a tutorial on how to apply the package. We are happy to take comments and
suggestions.
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elasticity, the framework also applies to other studies estimating CES functions, e.g. the substitution
between different skill types of labor or consumption goods.

In line with the majority of the literature, our estimation framework starts from the relative first order
conditions. The share of capital relative to labor in total income is determined by two factors: The relative
factor payments and factor-augmenting technical change. Their relative importance is determined by the
elasticity of substitution. Whereas the relative factor payments are observed data, factor-augmenting
technical change is unobserved and refers to all persistent factors that affect the relative factor shares
in total income for given factor payments. We specify factor-augmenting technical change to satisfy
three requirements: i) A long run trend in factor-augmenting technical change should be allowed. ii)
The process must be sufficiently flexible to capture persistent fluctuations in factor-augmenting technical
change during several transition periods. Yet, as a very flexible process has a tendency to ascribe all
variations in factor shares to technical change, placing less emphasis on price changes, the process should
not capture the year-to-year errors between the model and the data. iii) The process should be related
to the existing trend assumptions applied in the literature and potential deviations from these determined
by a likelihood-driven approach. A process that fits these three requirements is an I(2) process of factor-
augmenting technical change. The smoothness of the process depends on the inverse signal-to-noise ratio
(i.e. the noise-to-signal ratio, Leon-Ledesma et al., 2010), defined as the measurement error variance
relative to variance of factor-augmenting technical change. A high estimated value of the noise-to-signal
ratio implies that the process converges to a linear trend. Oppositely, a low estimated value implies that
most of the variations in relative factor shares (not described by the relative factor payments) are ascribed
to factor-augmenting technical change. Thus, the resulting process lies somewhere between a linear trend
assumption and a dynamic calibration of technical change (i.e. where all year-to-year errors between the
model and the data are described as technical change).

A potential concern is that when the noise-to-signal ratio is freely estimated, the ratio with the highest
likelihood results in a dynamic calibration, which is against how we intend to measure factor-augmenting
technical change. Importantly, we find that the model is generally misspecified for low noise-to-signal
ratios based on an autocorrelation test and a filter consistency test. In these cases, we supplement the
free estimation with a grid search procedure and implement the value that maximizes the likelihood
conditional on being well specified.

In summary, we here provide a framework that allows the identification of the elasticity of substi-
tution jointly with a process of factor-augmenting technical change that contains a long run trend with
potentially persistent fluctuations during transition periods. We emphasize that our goal is not to prove
if medium run cycles of technical change are present as this is already well documented in the literature
using spectral analysis.3

We start by analyzing the performance of our state-space framework in a simulation study. Data is

3Comin and Gertler (2006); Leon-Ledesma and Satchi (2019); Growiec et al. (2018) assume that the medium term com-
ponent is variations in the frequency domain of 32 to 200 quarters. Charpe et al. (2020) assume that the medium term is 8 to
32 years.
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simulated according to Leon-Ledesma et al. (2010, 2015) with the following extensions: We simulate
the factor-augmenting technical change according to three different deterministic trends: A constant
growth rate assumption, a Box-Cox transformation of the growth rates, and a time-varying growth rates
assumption which implies a long run trend in factor-augmenting technical change and several persistent
transition periods. In addition, we update the variances of factor demands and value-added to match the
US data applied in the empirical analysis. The performance of the state-space framework is compared to
two system estimators where the first assumes a linear trend and the second a Box-Cox transformation
of the growth rates. For all trend assumptions in the data generating process, the state-space framework
reproduces the true estimate on the median. Oppositely, we find that both system estimators are biased
towards unity, in particular when the deterministic trend becomes increasingly non-linear. Importantly,
this shows that a flexible trend assumption is important for obtaining unbiased estimates on the median,
in particular when several persistent fluctuations of technical change are present in the sample.

After the methodological contribution of the paper, we subsequently apply the state-space framework
to data from the Penn World Tables version 10 (PWT, Feenstra et al., 2015). We estimate the elasticity of
substitution for 16 OECD countries along with the factor-augmenting technical change. The estimated
elasticity of substitution is significantly below unity and above zero for all countries, rejecting the Cobb-
Douglas and Leontief production functions. The obtained weighted average is 0.42 and the estimates
range from 0.11 (Norway) to 0.65 (Korea). Importantly, the US estimate is 0.54 and thus close to the
range of consensus estimates in meta regression studies (Chirinko, 2008; Knoblach et al., 2020; Gechert
et al., 2021) where they correct for different sources of bias. On the contrary, using the system estimator
with Box-Cox trend we obtain an estimate that falls outside the range of consensus estimates.

For all countries, the estimated process of factor-augmenting technical change supports the assump-
tion that technical change is labor-augmenting in the long run, but with a declining growth rate relative to
capital over time in most countries. Overall, the long run trend in the estimated processes with the state-
space framework is similar to the processes estimated with a Box-Cox trend. However, the processes
estimated with the state-space framework indicate that there are persistent fluctuations during transition
periods, in particular in the 90’es and after the financial crisis, which are not captured by the Box-Cox
trend. This highlights that while the Box-Cox transformation and state-space framework capture similar
long run trends, only the state-space framework is able to incorporate persistent fluctuations in factor-
augmenting technical change during transition periods.

The recent and growing interest in the global decline of the labor share has renewed the interest of
the estimation of the substitution elasticity. Two popular explanations have typically been suggested
as causing the decline in the labor share observed in recent decades: Changes in the relative price and
technical change. Which channel is the most important is inherently linked to the value of the elasticity.
Karabarbounis and Neiman (2014) argue that the decreasing price of investments relative to the wage is
the main determinant behind the global decline in the labor share. However, this interpretation depends
crucially on the elasticity being above unity. Gechert et al. (2021) show that the decline in the labor
share following a transitory labor-augmenting technology shock is five times as large when the elasticity
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is equal to 0.9 compared to 0.5. Oberfield and Raval (2021) find that the decline in the US labor share
since 1980 is mainly driven by biased technical change when the baseline elasticity is around 0.5 and
the decline is more than four times as large as when the elasticity is equal to two. Consequently, the
value of the elasticity has major implications for policy and its proper estimation is therefore of utmost
importance.

We contribute by implementing an estimation framework that allows for several persistent transition
periods in factor-augmenting technical change. This is in line with several papers that argue that technical
change is not only the main determinant of the long run labor share, but also important in periods of
transition (Beaudry, 2005; Comin and Gertler, 2006; Growiec et al., 2018; Leon-Ledesma and Satchi,
2019; Oberfield and Raval, 2021). As we find in this paper, incorporating these shifts is important to
obtain unbiased elasticity estimates on the median. Thus, we provide a less parameteric framework for
the estimation of the elasticity that incorporates several shifts in factor-augmenting technical change as
compared to earlier studies that incorporate a linear or Box-Cox trend assumption (Antras, 2004; Klump
et al., 2007, 2008; McAdam and Willman, 2013; Leon-Ledesma et al., 2015; Stewart and Li, 2018).
Lastly, we apply a filter on technical change, whereas Chirinko and Mallick (2017) apply a low-pass
filter to the time series prior to estimation.

The paper is organized as follows: In Section 2 we show how imposing assumptions on either the
elasticity or technical change affect each other. The state-space framework is presented in Section 3.
Section 4 presents the results of the simulation study and Section 5 the estimated elasticities and processes
of technical change estimated in the PWT data. Lastly, Section 6 concludes.

2 The bias of technical change and the identification problem of the
elasticity of substitution

As the capital-labor elasticity of substitution and technical change are both unobserved parameters, re-
strictions on one of the parameters are needed to obtain identification. In Section 2.1 we first present the
firms optimization problem and argue that the effect of factor-augmenting technical change on the labor
and capital share is determined by the elasticity of substitution. Section 2.2 illustrates the identification
problem when imposing incorrect assumptions on either the elasticity or the process of technical change.

2.1 The elasticity of substitution and biased technical change

A representative firm in a given country produces in accordance with a CES production function using
capital and labor as input factors in production. Technical change is allowed to influence the efficiency
of the two factors differently allowing for so-called factor-augmenting technical change:

Yt =

[
π
(
Γ

K
t Kt

)σ−1
σ +(1−π)

(
Γ

L
t Lt

)σ−1
σ

] σ

σ−1

. (1)
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Yt is value-added, Kt is capital, and Lt is labor. ΓK
t and ΓL

t are capital- and labor-augmenting technolo-
gies, respectively. In the following we denote the growth rates of the factor-augmenting technologies as
technical change. σ is the constant elasticity of substitution, and π is the capital share in total income.
Assuming cost minimizing firms, the first order conditions (FOC) of capital and labor are:

rt ≡
∂Yt

∂Kt
= π

(
Γ

K
t
)σ−1

σ

(
Yt

Kt

) 1
σ

, (2)

wt ≡
∂Yt

∂Lt
= (1−π)

(
Γ

L
t
)σ−1

σ

(
Yt

Lt

) 1
σ

. (3)

rt and wt are the factor payments (i.e. the user cost of capital and the wage, respectively). To elaborate
on how the factor-augmenting technologies and the elasticity interact, we derive the inverse relative FOC:

log
(

rtKt

wtLt

)
= σ log

(
π

1−π

)
+(1−σ)

(
log

(
ΓL

t

ΓK
t

)
+ log

(
rt

wt

))
. (4)

Equation (4) illustrates how relative factor-augmenting technical change and changes in the relative price
interact with the elasticity of substitution: As an example, consider the case of relative labor-augmenting
technical change, that is ∆log

(
ΓL

t /ΓK
t
)
> 0. When σ < 1, technical change is biased towards capital, i.e.

increasing the share of capital, whereas technical change is biased towards labor when σ > 1. A decrease
in the relative factor payments, ∆log(rt/wt), will increase the share of labor when σ < 1 and decrease
it when σ > 1. Two special cases emerge when σ → 1 where production is Cobb-Douglas, resulting
in constant relative factor shares, and σ = 0 where production is Leontief and there is no substitution
between the production factors due to factor payment changes (perfect complements).

2.2 The identification problem of the elasticity and technical change

As both the elasticity, σ , and the relative factor-augmenting technologies, ΓL
t /ΓK

t , are unobserved vari-
ables in equation (4), we cannot identify both without further assumptions on either the elasticity or the
process of the technologies. In this Section, we illustrate the non-identification problem with a hypo-
thetical example based on US data for the time period 1950-2019.4 The idea is to first impose different
restrictions on the elasticity and illustrate how this affects the residually derived technologies. Next, and
most relevant for our paper, we illustrate how imposing restrictions on the process of technical change
affects the elasticity. In particular, we highlight how restrictive trend assumptions, such as a linear or
Box-Cox time trend, cannot capture several shifts in technical change and that this affects the elasticity.

As we derive ΓL
t /ΓK

t residually in this example, it should be emphasized that ΓL
t /ΓK

t captures all
factors that affect the relative factor shares (other than factor payments). Thus, the residually derived
ΓL

t /ΓK
t reflects long run factors such as technical change and institutional quality (Acemoglu, 2009;

Acemoglu and Autor, 2011; Cantore et al., 2014) but also factors at a business cycle frequency such

4Yearly data from the US is applied and all variables are from the PWT and described in more detail in Section 5.
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Figure 1: Factor-augmenting technical change in the US data.
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Notes: The Figure displays the residually derived growth rates in percentage of labor- and capital-augmenting
technologies, ΓL

t and ΓK
t , respectively, for different values of σ . The processes are derived from the first order

conditions of capital and labor. The dashed red lines show 10-year averages, one for each decade.
Source: Data is obtained from the PWT.

as markup variations, labor hoarding, factor utilization, as well as product-, search-, and labor market
frictions (Bertola et al., 2005; Schneider, 2011). Yet, this is no different from other studies in the literature
estimating production functions and is still informative on the time-variation in factor efficiency.

Imposing restrictions on σ

First, we impose restrictions on σ ∈ (0.2,0.5,0.9,1.3) and derive the yearly growth rates of ΓL
t , ΓK

t ,
and ΓL

t /ΓK
t residually from equations (2)-(4). The resulting technical changes are shown in Figure 1.

Two main observations can be made: i) The imposed value of the elasticity has large implications for
the volatility as well as the level of technical change. ii) Technical change is directed at improving the
efficiency of labor relative to capital on the average. However, several persistent shifts in the direction of
technical change, represented by the shifts in the 10-year average growth rates, are observed, in particular
after the financial crisis.
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Imposing restrictions on ΓL
t /ΓK

t

To illustrate how the elasticity of substitution is affected by the assumptions made about technical change,
we next perform the opposite exercise where we impose restrictions on the process of technical change
and derive the elasticity residually. The procedure consists of three steps: i) Assume σ = 0.5 and measure
log

(
ΓL

t /ΓK
t
)

residually based on equation (4). ii) Next, we estimate a technology process of the residually
derived log

(
ΓL

t /ΓK
t
)
. iii) Lastly, we impose the fitted values of this estimation in equation (4) and derive

σ residually. This hypothetical exercise implies that when σ deviates from 0.5 it reflects mismeasurement
of technical change.

The widely cited paper by Berndt (1976) assumed Hicks-neutral technical change and estimated the
US elasticity to unity, thus providing support for the Cobb-Douglas production function widely applied
in economic models. The assumption of Hicks-neutral technical change implies that capital and labor
are equally affected by technical change, i.e. the ratio ΓL

t /ΓK
t remains constant. The resulting residually

derived value of the elasticity when imposing Hicks-neutrality is shown in the upper left graph of Figure
2. As we use the initial values of ΓL

t /ΓK
t derived above, the elasticity starts at σ = 0.5, but converges

to 1 with a trend of 0.56%-points per year. The mean squared error (MSE) is 0.079 reflecting the poor
performance of the Hicks-neutral assumption. As pointed out by Antras (2004) and Leon-Ledesma et al.
(2015), this bias towards 1 shows that a trend in the relative technologies is needed to match a constant
capital-to-labor ratio in the long run when the relative factor payments is trending.

To account for the trend in the relative factor payments, we next assume that ΓL
t /ΓK

t follows a linear
trend given by (γL − γK)(t − t0).5 Compared to the Hicks-neutral technical change, using the linear trend
assumption considerably improves the average value of the elasticity (upper right graph in Figure 2),
which is only slightly upward biased (0.542 vs. imposed value of 0.5). The MSE is 0.007 and thus more
than 10 times smaller than the Hicks-neutral assumption. However, considerable deviations from σ = 0.5
throughout the sample are present which is a mirrow of the fact that the linear trend is unable to reproduce
the fluctuations of technical change during several persistent periods of transition.

To incorporate fluctuations of technical change during persistent periods of transition, Klump et al.
(2007) suggested to apply a Box-Cox transformation to measure technical change. This assumption al-
lows for accelerating, constant or decelerating growth rates and has been widely applied in later studies
(Klump et al., 2008; McAdam and Willman, 2013; Stewart and Li, 2018). The residually derived elastic-
ity when applying a Box-Cox transformation is shown in the lower left graph in Figure 2.6 The Box-Cox
transformation reproduces the average elasticity with high precision and reduces the MSE marginally
to 0.005. However, considerable deviations from σ = 0.5 are present, in particular in the late half of
the sample. This illustrates that the (incorrect) identification of technical change being accelerating or

5We measure γK as the average growth rate of the residually derived ΓK
t when σ = 0.5 and γN as the average growth rate

of ΓN
t .

6The parameters of the Box-Cox transformation are estimated by a non-linear estimator where we minimize the sum of
squared residuals. We apply parameter values estimated by Klump et al. (2007) as initial values. The estimated values imply
average growth rates of ΓL

t around 2% and average growth rates of ΓK
t around 0.4%, close to the average growth rates observed

in Figure 1.
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Figure 2: Elasticity of substitution for different trend assumptions of technical change.
Hicks−neutral

Time

1950 1970 1990 2010

0.
2

0.
4

0.
6

0.
8

1.
0

Mean= 0.752
trend= 0.56 %
MSE=0.079

Linear trend

Time

si
gm

a

1950 1970 1990 2010

0.
2

0.
4

0.
6

0.
8

1.
0

Mean= 0.542
trend= 0.13 %
MSE=0.007

Box−Cox trend

1950 1970 1990 2010

0.
2

0.
4

0.
6

0.
8

1.
0

Mean= 0.499
trend= 0 %
MSE=0.005

HP−filter

(h
pf

ilt
er

(G
am

m
a_

K
 −

 G
am

m
a_

L,
 fr

eq
 =

 6
.2

5,
 ty

pe
 =

 "
la

m
bd

a"
)$

tr
en

d 
−

 

1950 1970 1990 2010

0.
2

0.
4

0.
6

0.
8

1.
0

Mean= 0.501
trend= 0 %
MSE=0.001
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The elasticity is derived from the relative first order condition of capital and labor. σ = 0.5 implies correct modeling
of technical change.
Source: Data is obtained from the PWT.

decelerating will adversely affect the estimate of the elasticity, in particular in periods of transition.
A process of technical change that allows for several persistent shifts in technical change, but still

nests the methods most commonly applied in the literature, is the I(2) process known from the Hodrick
and Prescott (1997) filter. In the lower right graph in Figure 2 we see that this method performs supe-
rior in terms of reproducing the true estimate on the mean and in particular in terms of minimizing the
mismeasurement of technical change during persistent transition periods reflected by the low MSE on
0.001. This result is what motivated our estimation framework where we define technical change as an
I(2) process as described in the next Section.

3 The state-space framework

In this Section, we present our new state-space estimation framework for the estimation of the elasticity
of substitution. Section 3.1 describes the state-space representation and Section 3.2 presents how the
parameters of the model are estimated.
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3.1 State-space representation

The state-space representation starts from the relative inverse FOC of capital and labor (equation 4). As
the equation is static, it is implicitly assumed that the economy is in a long run equilibrium. However,
in macroeconomic modeling adjustment costs are often imposed to ensure lags in the response of quan-
tities to relative price changes (Christiano et al., 2005; Smets and Wouters, 2007). Consequently, using
equation (4) may result in a small sample bias due to the relatively short sample applied in the empirical
analysis for several of the 16 OECD countries.7 In this paper, we employ an error-correction model to
allow for short run dynamics in factor shares. Specifically, we estimate the equation:

∆st = α (st−1 − (1−σ) pt−1 −µt−1)+
k

∑
i=0

κi∆pt−i +
k

∑
i=1

ωi∆st−i + εt , εt ∼ N(0,Σε). (5)

st = log
(

rtKt
wtLt

)
is the relative factor share in national income, pt = log

(
rt
wt

)
is the relative factor pay-

ments, and µt = C + (1−σ) log
(

ΓL
t

ΓK
t

)
maps into the relative factor-augmenting technology.8 Time-

invariant factors, C, will affect the level of µt but not the dynamics, which are of main interest.9 The
speed of adjustment to the long run equilibrium is determined by α , and σ is the long run elasticity. κi

and ωi are the short run elasticities with respect to factor payments and factor shares, respectively. The
optimal lag length (k) is determined such that no autocorrelation is present in the measurement errors, εt .

As shown in Knoblach et al. (2020) and Section 2, the estimation of σ is highly affected by the
assumptions made about the process of the relative factor-augmenting technologies, µt . We specify the
process of µt to satisfy three requirements motivated by the literature: i) As the relative factor payments
contains a trend in many of the estimations, a trend should be allowed if the relative factor shares are
approximately constant in the long run. ii) We deviate from the linear trend assumption to account for
the persistent deviations from the long run trend in periods of transition. iii) µt is a slow moving process,
meaning it should not reflect short run factors such as labor market frictions, adjustment costs, and risk
premium fluctuations. The following I(2)-process for µt satisfies these three requirements:

∆µt = ∆µt−1 +ηt , ηt ∼ N(0,Ση). (6)

With this model setup, consisting of the observation equation (5) and the state equation (6), εt captures
temporary deviations from the long run equilibrium, whereas ηt captures persistent changes in the relative

7To focus on the long run, researchers have typically relied on error-correction models (Caballero, 1994), applying a
low-pass filter to the data (Chirinko and Mallick, 2017), or estimate in long differences (Karabarbounis and Neiman, 2014).

8Hicks neutral technical change, affecting both technology factors in the same way, will not affect the relative technology
level and the relative factor shares. Thus, we only identify factor-augmenting technical change.

9Based on the non-normalized FOC, equation (4), C = σ log
(

π̄

1−π̄

)
and C = σ log

(
π̄

1−π̄

)
+(1−σ) log

(
K̄
N̄

)
is obtained

from the normalized equation system (14)-(16) presented in Appendix A. As π̄ , K̄ and N̄ (sample averages) are based on the
observed data series, it is possible to determine the value of C and thereby also the level of log

(
ΓL

t /ΓK
t
)
.
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factor-augmenting technical change. The trend specification in equation (6) is a special case of the Local
Trend Model where the variance of the drift term has been set to zero and the result is a model with a
smooth trend, which is how we identify technical change. The degree of smoothness of technical change
is determined by the noise-to-signal ratio, λ ≡ Σε/α2Ση . A very low degree of smoothing (low values of
λ ) would ascribe almost the entirety of unexplained year-to-year fluctuations in factor shares to changes
in technical change, whereas a very high degree of smoothing imposes a linear trend assumption on the
model.

3.2 Estimation of the state-space model

The state parameters of the model (µt ,σ ,α,κi,ωi) are estimated with the Kalman filter and the measure-
ment error variance, Σε , is estimated with a recursive application of the maximum likelihood estimator.
As a starting point, λ is also estimated with maximum likelihood. However, in some estimations the re-
sulting model is not well-specified, based on a filter consistency test (the Normalized Innovations Squared
test (NIS) - see Appendix B for a description) and a Breusch-Godfrey test for autocorrelation. As shown
in Section 5.2, a low degree of smoothing often leads to filter inconsistency (overfitting), whereas a high
degree of smoothing results in autocorrelated residuals (trend is too restrictive). Therefore, the maximum
likelihood estimate is combined with a grid searching procedure in the range 20 to 500 with increment 10.
The value of λ that maximizes the likelihood conditional on being well specified at the 10% significance
level is chosen.10 By applying the grid search procedure, we also address the issue of having potentially
multiple local minima of the likelihood function.

Technically, the elasticity and adjustment parameter are specified as unobservables with a zero vari-
ance in the state-space representation. Therefore, no standard errors are obtained when using the Kalman
filter. Instead, we apply a standard recursive residual-based bootstrapping procedure with 1,000 itera-
tions to obtain standard errors, which are valid given that the model’s measurement errors are neither
autocorrelated nor heteroscedastic.

To summarize, the estimation procedure is as follows:

1. Estimate the state-space representation with the Kalman filter for different initializations of σ and
α . Pick the combination that maximizes the likelihood.

(a) For every initialization of σ and α we estimate Σε with maximum likelihood for different
initializations. Choose the initial value of Σε that maximizes the likelihood. If λ is freely
estimated, it will be estimated in this step also.

2. If autocorrelation in εt or a violation of the consistency test is detected, lags are included and the
procedure returns to step 1.

10A 10% significance level is used throughout the paper to acknowledge that we are working with a relatively small sample.
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3. Perform steps 1-2 for a grid of different values of λ . The first is a free estimation and the pro-
ceeding values are calibrated from the interval 20 to 500 with increment 10. The preferred value
of λ is the value that maximizes the likelihood conditional on being well-specified based on the
autocorrelation and filter inconsistency test.

4. Obtain standard errors from the recursive residual-based bootstrapping procedure.

This procedure is relatively easy to implement, and codes are publicly available at Github. We refer the
reader to Kastrup et al. (2021) for a detailed description of how to apply the package.

4 Simulation evidence

4.1 The simulation setup

Data is simulated according to the simulation studies by Leon-Ledesma et al. (2010, 2015). They sim-
ulate stochastic processes of labor (Lt), capital (Kt), labor-augmenting technologies

(
ΓL

t
)
, and capital-

augmenting technologies (ΓK
t ) and match the variance of these to US data for the time period 1950-2005.

These processes are used to derive equilibrium value-added (Y ⋆
t ), observed value-added (Yt) (i.e. equi-

librium value-added plus measurement errors), and real factor payments (rt and wt). Measurement errors
are added in terms of an interest rate and a wage shock. We deviate in two aspects: i) We update the
standard deviations of the growth rate of Lt , Kt , and Yt according to the US data applied in the empirical
analysis. ii) Leon-Ledesma et al. (2010, 2015) assume that ΓL

t and ΓK
t consist of a linear trend and an i.i.d.

error term. We test the performance of the estimators for different deterministic trend specifications, by
first simulating ΓL

t and ΓK
t as Random Walks with a drift and a stochastic trend. Second, we simulate data

according to a Box-Cox transformation of the growth rates. Lastly, we simulate data with several persis-
tent shifts in the average growth rate of technical change, consistent with the 10-year averages shown in
Figure 1 when σ = 0.5. In general we find that ii) (i.e. how technical change is specified) has the largest
impact on the results and is the most important change relative to Leon-Ledesma et al. (2010).

As in Leon-Ledesma et al. (2010, 2015), the stochastic processes of capital and labor are simulated
according to a Random Walk with a drift:

log(Kt) = η + log(Kt−1)+ ε
K
t , (7)

log(Lt) = κ + log(Lt−1)+ ε
L
t . (8)

η and κ are the average growth rate of capital and labor, respectively. Both error terms are assumed
normally distributed with mean zero and standard deviations, sd

(
εK

t
)

and sd
(
εL

t
)
. We set the initial

values K0 = L0 = 1.
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We deviate from Leon-Ledesma et al. (2010, 2015) by simulating the factor-augmenting technologies
of capital and labor according to the following processes:

log
(
Γ

K
t
)
= gK (t, t̄)+ log

(
Γ

K
t−1

)
+ ε

ΓK

t , (9)

log
(
Γ

L
t
)
= gL (t, t̄)+ log

(
Γ

L
t−1

)
+ ε

ΓL

t . (10)

gK (t, t̄) and gL (t, t̄) are the deterministic trends and εΓK

t and εΓL

t the stochastic i.i.d. normally dis-
tributed error terms with standard deviations sd

(
εΓK

t

)
and sd

(
εΓL

t

)
. We set ΓK

0 = ΓL
0 = 1 and apply

three different specifications of the deterministic trends: i) A linear trend assumption, gK (t, t̄) = γK and
gL (t, t̄) = γL. ii) A Box-Cox transformation of the growth rates (see Appendix C for details). iii) Lastly,
to analyze the performance of the estimators when several persistent deviations from the long run trend
are present, we apply the 10-year averages for σ = 0.5 shown in Figure 1 as measures of gK (t, t̄) = γK,τ

and gL (t, t̄) = γL,τ with τ indicating the decade.
Several papers highlight the importance of normalizing the production function when applying system

estimators to estimate the substitution elasticity (Klump et al., 2007; Leon-Ledesma et al., 2010; Klump
et al., 2012). As argued by Leon-Ledesma et al. (2010), the sample average of the distribution parameter,
π̄ , provides plausible starting values for π when the system is normalized and the efficiency parameter,
ξ = Y0/Ȳ , should be close to unity without casting serious doubts on the estimation results. Oppositely,
a non-normalized system provides no clear guidelines to the starting values of π and ξ which may bias
the estimate of σ towards unity. To test the sensitivity of our state-space framework to normalization,
we follow Leon-Ledesma et al. (2010) and simulate data according to a normalized production function.
The normalized production function is given by:

Y ⋆
t = Y ⋆

0

π0

(
Kt

K0

ΓK
t

ΓK
0

)σ−1
σ

+(1−π0)

(
Lt

L0

ΓL
t

ΓL
0

)σ−1
σ

 σ

σ−1

. (11)

Y ⋆
t is used to derive the first order conditions of capital and labor. Y ⋆

0 = r0
π0

K0 is the initial value. We
initialize the capital share, π0, and interest rate, r0, to 0.4, which implies that Y ⋆

0 = 1. With this particular
initialization and K0 = 1, the estimate of σ is invariant to normalization. Therefore, we adjust the size of
K0 and r0 in Appendix C to analyze how our framework performs when normalization matters.

The first order conditions (i.e. the factor payments) are obtained by differentiating (11) with respect
to capital and labor, respectively:

rt ≡
∂Y ⋆

t
∂Kt

= π0

(
ΓK

t

ΓK
0

Y ⋆
0

K0

)σ−1
σ

(
Y ⋆

t
Kt

) 1
σ

eεr
t , (12)

wt ≡
∂Y ⋆

t
∂Lt

= (1−π0)

(
ΓL

t

ΓL
0

Y ⋆
0

L0

)σ−1
σ

(
Y ⋆

t
Lt

) 1
σ

eεw
t . (13)
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The terms εr
t and εw

t are an interest rate and a wage shock, respectively, and assumed normally
distributed with zero mean. To remain consistent with national accounts we adjust value-added so that
Yt = rtKt + wtLt . It can be shown that Yt/Y ⋆

t = ηteεr
t + (1−ηt)eεw

t .11 Thus, to match the volatility
of value-added observed in the US data, it is necessary to calibrate the standard deviations of εr

t and
εw

t . However, as the volatility of Y ⋆
t and ηt depends on the trend assumptions of technical change, the

standard deviations of εr
t and εw

t need to be adjusted accordingly. As in Leon-Ledesma et al. (2015) we
impose the assumption that sd (εr

t )/sd (εw
t ) = 2. By imposing this assumption, we calibrate the standard

deviations of εr
t and εw

t such that the growth rate of Yt matches the growth rate of GDP in the US data.

Parameterization

The parameterization is mainly based on the literature (see Table 1). In addition, we update the standard
deviations based on the US data applied in the empirical analysis.12 The initial capital share in total
income, π0, is 0.4, which corresponds well with an average value of 0.38 in the US data applied in the
empirical analysis. The performance of the estimators are tested for four different values of the elasticity
of substitution, σ . The first value is a near-Leontief elasticity of 0.2. The second elasticity is set to 0.5
and similar to the preferred US estimate from Klump et al. (2007) and Knoblach et al. (2020). The last
two values of the elasticity are close to unity from either sides: 0.9 and 1.3, respectively.

γK and γL are set to the same values as in Leon-Ledesma et al. (2010) and the curvature parameters of
the Box-Cox transformation, λK and λL, are taken directly from Klump et al. (2007). The average growth
rates of labor (η) and capital (κ) are from Leon-Ledesma et al. (2010), corresponding to average growth
rates of 1.5% and 3%, respectively, and similar to the US data applied in the empirical analysis (1.2%
and 2.7%, respectively).

The standard deviation of the growth rate in the capital stock, sd
(
εK

t
)
, and labor, sd

(
εL

t
)
, and value-

added, sd (∆log(Yt)), are calibrated based on the US data applied in the empirical analysis to 0.008,
0.02, and 0.021, respectively. As the residually derived processes shown in Figure 1 reflect technical
change and other factors including measurement errors, the standard errors of the factor-augmenting
technologies, sd

(
εΓK

t

)
and sd

(
εΓL

t

)
, are unobserved. Both values are set equal to 0.01 which is close

to the variance of a TFP shock in papers such as Backus et al. (1994) and Kose and Yi (2006) (0.009 and
0.018, respectively). As a robustness, we have also tried values of 0.02 and 0.005 and the quantitative
results still holds true.13 At the baseline, we set the number of time periods equal to 50. We test the

11ηt =
π0

(
Kt
K0

ΓK
t

ΓK
0

) σ−1
σ

π0

(
Kt
K0

ΓK
t

ΓK
0

) σ−1
σ

+(1−π0)

(
Lt
L0

ΓL
t

ΓL
0

) σ−1
σ

.

12We update the standard deviations of capital, labor, and GDP growth according to the PWT data and the time period
1950-2019. Using a 50 year period (1970-2019) leads to almost identical standard deviations.

13As an example, when the determinstic trend is the 10-year averages and σ = 0.5, the median estimate is almost unchanged
when applying the state-space framework. Oppositely, the median estimates with the system estimators are increasing in the
value of the standard errors. This is of no surprise as when the stochastic trend becomes increasingly important, technical
change becomes increasingly non-linear and thus a worse fit of the linear or Box-Cox trend assumptions.

14



Table 1: Parameter values.

Parameter Description Value Source

π0 Capital share in income 0.4 Leon-Ledesma et al. (2010)
σ Elasticity of substitution 0.2,0.5,0.9,1.3 Leon-Ledesma et al. (2010)
γK Average growth rate of capital-augmenting technology 0.005 Leon-Ledesma et al. (2010)
γL Average growth rate of labor-augmenting technology 0.015 Leon-Ledesma et al. (2010)
λK Curvature parameter of capital-augmenting technology -0.118 Klump et al. (2007)
λL Curvature parameter of labor-augmenting technology 0.439 Klump et al. (2007)
η Average growth rate of labor 0.015 Leon-Ledesma et al. (2010)
κ Average growth rate of capital γL+η Leon-Ledesma et al. (2010)
sd(εK

t ) Standard deviation of the growth rate in the capital stock 0.008 US data
sd(εL

t ) Standard deviation of the growth rate in the labor 0.02 US data
sd(∆log(Yt)) Standard deviation of the growth rate in value-added 0.021 US data
sd(∆log(εΓK,L

t )) Standard deviation of factor-augmenting technical change 0.01
T Number of yearly observations 20-70
M Number of monte carlo draws 1000

sensitivity of the results to the number of time periods by applying values in the range 20-70 in Appendix
C. Lastly, the number of simulations is set to 1,000.14

Table C1 in Appendix C reports the mean and standard deviations of the growth rates of the simulated
variables Kt , Lt , Yt , rt , and wt as well as the moments in the US data applied in the empirical analysis.
Importantly, across the trend assumptions and elasticities, our simulation study performs well in terms
of replicating the moments of Kt , Lt , and Yt . The moments of rt and wt match the US data to a lesser
extent and factors such as adjustment costs of capital and labor may be important for solving this issue.
Including such factors in the simulation study is beyond the scope of this paper.15

4.2 Simulation results

In this Section, we present the simulation results. The performance of the state-space framework is
compared to two system estimators, presented in detail in Appendix A.16 The first system estimator
imposes a linear trend assumption and the second system estimator a Box-Cox transformation of the
growth rates.

14We find that our results are stable when the number of draws is above 200.
15In general, we find that adjusting the variance of rt and wt through changes in the measurement errors only have minor

implications for the estimation results.
16When applying the state-space framework we do not include the tests for autocorrelation or NIS when determining the

optimal value of λ . This adjustment only affects the distance between the percentiles in some cases and the median estimate
is unchanged. As the measurement errors are added to the factor payments we estimate the inverse version of equation (4).
If only estimating equation (4), we observe a downward bias in the estimates of the elasticity. By reversing the equation we
obtain precise estimates which suggest, maybe not surprisingly, that an attenuation bias is present when the measurement
errors are added to the explanatory variables instead of the dependent variable. In addition, estimating the relative first order
conditions instead of equation (4) is more comparable to the system estimator that also estimate first order conditions. Thus,
with these adjustments, the estimators are as comparable as possible.
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Table 2: Estimated median elasticities in the simulated data.

σ= 0.2 σ= 0.5 σ= 0.9 σ= 1.3

Linear
State-space framework 0.22

(0.17;0.30)
0.51

(0.44;0.61)
0.90

(0.79;1.06)
1.30

(1.07;1.67)

System, Linear trend 0.24
(0.20;0.33)

0.58
(0.51;0.68)

0.91
(0.86;0.97)

1.22
(1.09;1.39)

System, Box-Cox 0.24
(0.20;0.31)

0.56
(0.51;0.67)

0.91
(0.86;0.98)

1.23
(1.09;1.39)

BoxCox
State-space framework 0.23

(0.18;0.33)
0.51

(0.43;0.61)
0.90

(0.83;0.99)
1.29

(1.13;1.53)

System, Linear trend 0.51
(0.39;0.73)

0.81
(0.67;0.95)

0.96
(0.91;0.99)

1.07
(1.00;1.18)

System, Box-Cox 0.22
(0.19;0.26)

0.54
(0.48;0.62)

0.92
(0.85;0.99)

1.23
(1.10;1.40)

10-year averages
State-space framework 0.24

(0.17;0.38)
0.50

(0.41;0.65)
0.90

(0.77;1.08)
1.31

(0.95;1.97)

System, Linear trend 0.29
(0.21;0.46)

0.58
(0.48;0.80)

0.92
(0.86;0.98)

1.21
(1.05;1.36)

System, Box-Cox 0.29
(0.21;0.45)

0.58
(0.48;0.77)

0.92
(0.87;0.98)

1.22
(1.07;1.34)

Notes: The table reports the estimated median elasticities in the simulated data. The results are displayed for four
different values of the elasticity, σ , and three different trend assumptions in the data generating process. 10 and 90
percentiles are reported in paranthesis.
Source: Own simulations.

Table 2 reports the estimated median elasticities when varying the value of σ and the trend assumption
of ΓL

t and ΓK
t in the data generating process. Importantly, across values of σ and trend assumptions

in the data generating process, the state-space framework is very accurate on the median: The state-
space framework is able at replicating the true elasticity for all three types of deterministic trends in the
data generating process. Oppositely, the two system estimators are both biased towards unity on the
median. This bias is consistent with papers such as Luoma and Luoto (2011) and Stewart and Li (2018)
who argue that the system estimator does not sufficiently account for the cross-equation correlation of
measurement errors. However, as the bias of the system estimators increases when technical change
becomes increasingly non-linear, cross-equation correlation of measurement errors cannot be the sole
explanation for the bias towards unity. Consequently, misspecification of technical change also biases
the median estimate and a flexible specification of technical change, such as the state-space framework,
is important for obtaining unbiased median estimates.

Along with the 10 and 90 percentiles reported in Table 2, density plots are used to shed further light
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Figure 3: Density plots of the estimated elasticities in the simulated data.
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Notes: The Figure shows the density plots of the simulations for different values of σ and the three different trend
assumptions in the data generating process. Dashed blue lines are the state-space framework, dotted red lines the
system with linear trend, and dotdashed red lines the system with Box-Cox trend.
Source: Own simulations.

on the distribution of the estimators (Figure 3). The estimates obtained with the state-space framework
are centered around the true value for all trend assumptions and values of the elasticity. In addition,
the estimates with the state-space framework are determined with a high precision in the empirically
plausible range of σ ≈ 0.5. While the system estimators are in general more narrowly distributed than
the state-space framework, the distributions are biased towards unity. This holds in particular true for
the system estimator with a linear trend when the deterministic trend in the data generating process is a
Box-Cox transformation.

Applying a flexible trend assumption is important not only for the precision of the estimates but also
for the estimation of technical change.17 When the deterministic trend in the data generating process is
linear (Figure 4, linear trend simulation 1-2) both the state-space framework and system estimator with
Box-Cox trend estimate processes that are close to linear. However, when the stochastic trend deviates
systematically from the deterministic trend (linear trend simulation 3 and 4), the estimated processes with
the state-space framework is a smooth trend and deviates from the deterministic trend, whereas this to a

17In Figure 4, we show the first four simulations (k ∈ 1,2,3,4) with seed number 1234+ k with k being the draw number.
Estimation results shown for σ = 0.5.
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Figure 4: Estimated relative factor-augmenting technical change in the simulated data.
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Notes: The graphs show the simulated (solid black line) and estimated processes (dashed blue: state-space frame-
work, dotdashed red: system estimator with Box-Cox trend) of ∆log(ΓL

t /ΓK
t ) in percentage for different trend

assumptions in the data generating process. The first four simulations are displayed.
Source: Own simulations.

lesser extent is captured by the system estimator with Box-Cox trend. When the deterministic trend in the
data generating process is Box-Cox (Box-Cox trend simulation 1-4), the state-space framework to a high
extent captures the dynamics of technical change during the sample and outperforms the system estimator
with Box-Cox trend, except for the initial shift in technical change. When the deterministic trend is
the 10-year averages (10-year average growth rate simulation 1-4), technical change is time-varying
with several persistent shifts in technical change, in agreement with the US data shown in Figure 1.
Importantly, the state-space framework reproduces the dynamics of technical change with high precision
and outperforms the Box-Cox trend, which is unable to capture several persistent shifts in technical
change.

In Appendix C we test the sensitivity of the state-space framework to normalization (i.e. different ini-
tializations of K0 and r0). We find that the state-space framework is close to unaffected by normalization.
This is a major advantage of our framework relative to the system estimators where proper normalization
is necessary to obtain unbiased estimates. In addition, we also test the sensitivity to the number of obser-
vations and find that when the number of observations is above 30, increasing the number of observations
has primarily gains for the precision of the estimates reflected by narrower confidence bands.
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5 Empirical application

The simulation exercise highlights that considerable gains in the estimate of the elasticity of substitution
and factor-augmenting technologies are obtained by applying the state-space framework compared to
estimators that assume a linear or Box-Cox trend. This in particular holds true in the empirically realistic
case where the trend process is time-varying with several persistent shifts in the growth rate of technical
change.

In this Section we apply the state-space framework to estimate the capital-labor substitution elasticity
on actual data from 16 OECD countries. The applied data is described in Section 5.1. In Section 5.2 we
report the main estimates of the elasticity of substitution and the estimated processes of technical change
are shown in Section 5.3.

5.1 Data

Four data series are necessary to estimate the elasticity: The capital stock, labor in hours, the user cost
of capital, and the hourly wage. The main data source is the PWT version 10 (Feenstra et al., 2015). The
capital stock and labor in hours are obtained directly from the PWT. For most countries, the PWT also
includes data on the labor share needed to obtain the hourly wage. However, for some countries the labor
share data is limited prior to 1995. In these cases, we apply data from the Structural Analysis Database
(STAN) from OECD, which enables us to extend the labor share data backwards to at least 1976.18

The main data issue in any study estimating the elasticity of substitution is how to measure the un-
known user cost of capital. From national accounts it follows that aggregate value-added is divided into
the share of labor, capital, and profits (Πt), Yt = rtKt +wtNt +Πt . As mentioned in Hulten (2010), two
approaches have typically been taken to separate the two unknowns, rt and Πt . The first imposes as-
sumptions on rt , such as the Hall and Jorgenson (1967) user cost, and derive Πt residually. The main
advantage of this approach is that time variation in markups, e.g. the global increase since 1980 docu-
mented by De Loecker and Eeckhout (2018), will not affect the user cost. However, we find this approach
problematic for at least two reasons: i) As mentioned by Karabarbounis and Neiman (2019), the Hall and
Jorgenson (1967) user cost does not take factors such as investment risk, adjustment costs, financial con-
straints, and risk premiums into account. ii) Caballero et al. (2017) find that the growing risk premiums
have generated an increasing wedge between the treasury bond rate and corporate borrowing costs in
recent decades. As a consequence, the user cost will not reflect the actual cost of borrowing.

The second approach instead imposes assumptions on Πt and derive rt residually. While this approach
requires assumptions on the aggregate profits, it is able to overcome many of the challenges with the Hall
and Jorgenson (1967) user cost and generates a more stable outcome (Karabarbounis and Neiman, 2019).

18The data series on the labor compensation from OECD do not include self-employment. This is normally corrected for by
assuming that the self-employed obtain the same wage as the employed (Blanchard, 1997; Klump et al., 2008; McAdam and
Willman, 2013; Leon-Ledesma et al., 2015). We have tried to measure labor compensation with and without this correction.
The resulting two labor shares were highly correlated (e.g. a correlation of 0.81 in France, 0.97 in Canada, and 0.99 in the
US). As data on self-employment is limited in the time dimension, we prefer not to correct for self-employment.
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Importantly, Karabarbounis and Neiman (2019) find that by adjusting sales to not only include the cost
of goods sold but also selling, general, and administrative expenses, the markup has been almost constant
over time. Based on these considerations, we follow Leon-Ledesma et al. (2015) and Cantore et al.
(2017) by assuming a 10% markup and derive the implied user cost of capital residually. It is important
to note that this assumption only affects the data applied in the empirical analysis and not the estimation
framework. As such, it is possible to implement different levels of the markup or time variability (e.g.
increase in recent decades) without changing the estimation framework. The resulting data series consist
of at least 44 observations for each country, fulfilling the minimum number of observations necessary to
obtain reliable estimates in the simulation study.

5.2 The elasticity of substitution

In Table 3 we report the estimated elasticities of substitution between capital and labor for the 16 OECD
countries in our sample. We apply the state-space framework as presented in Section 3 and compare
to the Box-Cox system estimator described in Appendix A.19 The shortest time period is 1976-2019
(Austria, column 1) and the longest 1950-2019 (US, Sweden, and France). The unweighted average
elasticity is 0.35 and the average weighted with GDP is 0.42 (column 2).20 This difference is primarily
driven by a relatively high estimate in US data on 0.54. The estimates range from 0.11 (Norway) to 0.65
(Korea).21 Even though some of the estimates are close to zero, all are significantly different from zero
as well as unity. Therefore, we reject the cases of Leontief and Cobb-Douglas production function in
all countries. Based on the meta regression studies (Knoblach et al., 2020; Gechert et al., 2021) and the
literature review in Chirinko (2008), the consensus US value in aggregate time series is in the range 0.4-
0.6 when allowing for factor-augmenting technical change and controlling for different sources of bias.
Consequently, our US estimate is consistent with the literature. Significant error-correction is present
in all countries (column 3). The unweighted average yearly error-correction is 33% and the weighted
39%, ranging from 16% (Japan) to 50% (US). The fact that the optimal allocation of input factors do not
respond immediately to factor payments and technical change highlights the importance of frictions such
as adjustment costs.

In roughly two thirds of the estimations, the maximum likelihood estimate of the noise-to-signal
ratio, λ , is well specified and preferred relative to the grid searching procedure (column 4, see Section
3 for details). The majority of the maximum likelihood estimates are in the range specified by the grid
searching procedure, except for Denmark and Australia (3765 and 7458, respectively). The remaining
noise-to-signal ratios are in the range 10-95, similar to values traditionally applied in the business cycle

19As we construct the user cost by assuming a 10% markup, we estimate the system estimator by imposing a markup
consistent with Leon-Ledesma et al. (2015).

20As only well-specified estimations are kept, the methodology secures automatically that the estimates are well specified
based on the autocorrelation and NIS test. Therefore, we do not report these test statistics.

21The low estimate in Norway is likely driven by the fact that an extra lag of first-difference of relative prices is added to
the observation equation. When not including this lag, the estimate is around 0.3. However, not including this lag comes with
the cost of autocorrelated residuals.
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literature (Backus et al., 1994; Ravn and Uhlig, 2002). Lemoine et al. (2010) also apply the Kalman filter,
but find that a maximum likelihood estimation of λ has a tendency to result in λ → 0, thereby attributing
most of the variation not explained by the factor prices to technical change, i.e. close to a dynamic
calibration of technical change. Importantly, our finding that most of the estimates of λ obtained with the
state-space framework are far from zero highlights that our framework is not subject to this over-fitting
issue. As we shall see in the next Section, smoothing in the range 10-95 allows for several persistent
shifts in technical change and the high values for Denmark and Australia imply an approximately linear
trend of technical change.

To elaborate on the high noise-to-signal ratio in Denmark and Australia, we have decomposed the
relative factor shares net of long run price effects (st − (1−σ) pt) in a trend component (µt) and a
cyclical component (κ∆pt + εt) (available upon request). The cyclical component is trending in Denmark
and have a level break in Australia due to a high wage inflation in the 70’es and 80’es in both countries,
similar to many European countries (Blanchard, 1997). When removing short run price effects from the
cyclical component, the remaining term is stationary and appear as an i.i.d. error term. Thus, when
controlling for short run price effects, a linear trend fits well with the long run trend of factor shares
net of prices. Oppositely, the cyclical component is stationary in the US implying that the medium
term deviations from the long run level of factor shares net of prices are instead captured by the trend
component (hence a lower noise-to-signal ratio).

Column 6-8 in Table 3 report the main parameter estimates when applying the system estimator with
a Box-Cox trend and the full set of the parameters are displayed in Table D1 in Appendix D. The av-
erage elasticity is above the average obtained when applying the state-space framework (0.45 compared
to 0.35). The estimates deviate significantly from the state-space framework in more than half of the
estimations, highlighting that the choice of estimation framework and in particular process of technical
change have major implications for the estimated elasticity. In all countries γL > γK , implying that tech-
nical change is predominantly labor-augmenting (the average of γL is approximately 2% and the average
of γK is 0%). Whereas λL is estimated on the unit interval, implying a decelerating growth rate of labor-
augmenting technical change and estimated with a high precision, λK ranges from -0.92 (Sweden) to 4.12
(Great Britain) and is in general imprecisely estimated.

In Appendix D we report the estimated elasticities with the state-space framework for different noise-
to-signal ratios. We find that i) in line with Chirinko and Mallick (2017), the estimated elasticity is
tightly bound by the filtering assumptions made. This highlights that in line with the literature (Klump
et al., 2007; McAdam and Willman, 2013; Knoblach et al., 2020), our findings reiterate the tight link
between identifying restrictions on technical change and the elasticity of substitution. Although our
model specification is less parametric and seemingly less a priori restrictive we do not escape this fact. ii)
Some (but not too high) degree of smoothing is needed to obtain a well specified model. This indicates
that persistent deviations from the long run trend of technical change are not only important from an
economic perspective but also an econometric perspective. iii) For most countries, a certain range of
moderate degrees of smoothing lead to almost the same estimate, implying that the framework is robust
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Table 3: Main estimates of the elasticity of substitution.

State-space framework Box-Cox system estimator
Time period σ α λ lags σ γK γL

Australia 1959-2019 0.28
(0.07)

−0.23
(0.07)

7458 0 0.44
(0.00)

−0.001
(0.000)

0.016
(0.000)

Austria 1976-2019 0.39
(0.09)

−0.4
(0.09)

10 0 0.29
(0.00)

−0.002
(0.000)

0.017
(0.000)

Belgium 1970-2019 0.34
(0.03)

−0.45
(0.07)

20 0 0.27
(0.00)

0.002
(0.000)

0.015
(0.000)

Canada 1970-2019 0.27
(0.04)

−0.37
(0.10)

20 0 0.34
(0.00)

−0.007
(0.001)

0.011
(0.001)

Denmark 1970-2019 0.43
(0.05)

−0.3
(0.05)

3765 0 0.28
(0.00)

−0.001
(0.000)

0.016
(0.000)

Finland 1970-2019 0.5
(0.07)

−0.27
(0.05)

34 0 0.45
(0.00)

−0.004
(0.001)

0.023
(0.001)

France 1950-2019 0.12
(0.05)

−0.31
(0.05)

20 0 0.52
(0.00)

−0.002
(0.000)

0.027
(0.001)

Great Britain 1970-2019 0.36
(0.05)

−0.35
(0.09)

30 0 0.44
(0.00)

0.002
(0.001)

0.017
(0.001)

Italy 1970-2019 0.48
(0.07)

−0.25
(0.05)

59 0 0.41
(0.00)

−0.009
(0.000)

0.012
(0.000)

Japan 1970-2019 0.13
(0.06)

−0.16
(0.05)

60 0 0.4
(0.00)

−0.005
(0.000)

0.02
(0.000)

Korea 1970-2019 0.65
(0.08)

−0.37
(0.06)

95 0 0.78
(0.02)

−0.023
(0.002)

0.064
(0.002)

Netherlands 1970-2019 0.25
(0.03)

−0.28
(0.06)

20 0 0.29
(0.01)

−0.001
(0.000)

0.014
(0.000)

Norway 1970-2019 0.11
(0.05)

−0.34
(0.07)

45 1 0.6
(0.01)

−0.001
(0.001)

0.021
(0.001)

New Zealand 1971-2019 0.29
(0.05)

−0.5
(0.09)

11 0 0.75
(0.02)

−0.008
(0.003)

0.019
(0.002)

Sweden 1950-2019 0.47
(0.06)

−0.23
(0.04)

95 0 0.6
(0.01)

0
(0.001)

0.022
(0.000)

USA 1950-2019 0.54
(0.09)

−0.5
(0.08)

16 0 0.33
(0.00)

0.003
(0.000)

0.017
(0.000)

Mean 0.35
(0.06)

−0.33
(0.07)

735 0 0.45
(0.00)

−0.004
(0.001)

0.021
(0.001)

Weighted mean 0.42
(0.07)

−0.39
(0.07)

298 0 0.39
(0.00)

−0.001
(0.000)

0.019
(0.000)

Notes: The Table reports the main estimation results of the elasticity of substitution for the 16 OECD countries.
Results are reported for the state-space framework and the system estimator with Box-Cox trend. From the state-
space framework, the estimated elasticity, σ , adjustment parameter, α , noise-to-signal ratio, λ , and number of lags
included in the estimation are reported. From the system estimator, the estimated elasticity, the average growth
rates of labor-augmenting technical change, γL, capital-augmenting technical change, γK are reported. Standard
errors reported in paranthesis.
Source: Data is obtained from PWT and the OECD STAN database.
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to changes in λ in a certain range. iv) The level of smoothness has not only implications for the elasticity
of substitution, but also for the estimated process of technical change. We refer the interested reader to
Appendix D for a further discussion of these points.

5.3 Factor-augmenting technical change

The relative factor-augmenting technical change, ∆log
(
ΓL

t /ΓK
t
)
, estimated with the state-space frame-

work is displayed in Figure 5 for all the 16 OECD countries (dashed blue line). Technical change has
been directed at improving the relative efficiency of labor during the entire sample period, except for the
years after the financial crisis in Austria, Netherlands, Sweden, and the US. However, the relative growth
rate has decreased over time, i.e the speed of labor-augmenting technical change has declined (or capital-
augmenting technical change increased). Several persistent fluctuations are observed in the growth rates,
indicating an important role for capital-augmenting technical change during periods of transition. In
particular a tendency of capital-augmenting technical change in the 90’es and after the financial crisis is
observed, e.g. the US and Great Britain. These findings are consistent with previous papers that have
tried to rationalize shifts in the direction of technical change. Blanchard (1997) and Acemoglu (2002)
argue that labor abundance, e.g. increasing unemployment rates in the European countries in the 70’es to
90’es, lead technical change to become capital-augmenting. Acemoglu (2003) and Klump et al. (2008)
argue that profit-maximizing incentives drive technical change, e.g. the IT-boom in the 90’es.

The process of technical change in Australia and Denmark with high estimated noise-to-signal ratios
are approximately linear trends. Oppositely, the processes of technical change in the countries with low
estimated ratios such as New Zealand, Austria, and the US are smooth trends with several persistent
shifts in technical change. This emphasizes that the state-space framework nests many different types
of processes of technical change. In addition, Figure 5 also includes the relative factor-augmenting
technical change estimated with the system estimator with Box-Cox trend (dotdashed red line). Even
though the long run trend of technical change estimated with the state-space framework is similar to
the process estimated with the system estimator with a Box-Cox trend, they differ in two important
points: i) The Box-Cox transformation implies initial growth rates in the range of 5-15%, which seems
empirically implausible, but is needed to match the curvature in later periods. ii) Most important, the
state-space framework incorporates several persistent shifts in technical change in contrast to the Box-
Cox transformation. This is the major difference between the two methods and underscores the ability of
the state-space framework to capture several persistent shifts in technical change as observed empirically.

6 Concluding remarks

How to specify the unknown process of technical change has long been an issue when estimating the
elasticity of substitution between capital and labor. In this paper we present a new state-space frame-
work to simultaneously provide an estimate of the elasticity of substitution and identify time-varying and
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Figure 5: Estimated relative technical change, ∆log
(
ΓL

t /ΓK
t
)
.
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Notes: The Figure display the estimated growth rates of relative augmenting technical change in percentage with
the state-space framework (dashed blue) and system estimator with Box-Cox trend (dotdashed red).
Source: Data is obtained from PWT and the OECD STAN database.

potentially factor-augmenting technical change. By exploiting the natural state-space representation of
the problem, we avoid a full parametric specification of the structural changes in the economy. Instead,
persistent shifts in the factor-augmenting technical change during transition periods as well as a long
run trend are identified by a smoothness restriction, the noise-to-signal ratio. We show in a simulation
study with non-linear technical change that our approach performs superior in terms of reproducing the
true elasticities on the median and outperforms the system estimators widely applied in the literature.
Based on an empirical analysis including data for 16 OECD countries from the PWT and the time period
1950-2019 we conclude the following: i) All estimates are significantly above zero, but below unity.
Consequently, our results suggest that the business cycle literature should abandon the Cobb-Douglas
assumption. ii) Long run technical change has been directed at improving the efficiency of labor rela-
tive to capital, but several periods of persistent shifts in technical change during transition periods are
observed. Importantly, the state-space framework is able at incorporating these shifts, opposite to the
existing Box-Cox or linear trend assumptions. Therefore, the state-space framework is recommended as
an improvement to models with parametric assumptions on factor-augmenting technical change and is
made publicly available through the statistical software program R.
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Several extensions are manageable to implement in our state-space framework: i) Several papers
have recently shown that the US elasticity has changed during the last decades (Cantore et al., 2017;
Chirinko and Mallick, 2017; Oberfield and Raval, 2021). Incorporating time-variation in the elasticity
is manageable in our framework by including a stochastic trend in the Random Walk process of the
elasticity. ii) In the business cycle literature, spectral analysis is often applied to decompose a time
series in a long run, a medium run, and an idiosyncratic error term component (Comin and Gertler,
2006; DeJong and Dave, 2011). This is indeed also possible in our framework but is likely to require
variance restrictions as in Lemoine et al. (2010). iii) Whereas our paper apply aggregate data, Chirinko
and Mallick (2017) estimate the US elasticity in industry-level data and Oberfield and Raval (2021) apply
US firm-level data. A panel data extension of the state-space framework is already under development
and codes are available upon request.
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A Estimators in the literature

In previously published papers, most often different versions of the first order conditions or a system
of equations are estimated. Of the studies investigated in the meta regression study by Knoblach et al.
(2020), 78% estimate first order conditions and 14% estimate equation systems.

The equation system estimators estimate the two FOC and the production function simultaneously.22

Recently, it has been acknowledged that normalization of the system is necessary to obtain consistent
estimates.23 Therefore, the equation system consisting of the first order conditions of capital and labor,
respectively, and the production function is normalized:

log(rt) = log
(

π̄
Ȳ
K̄

)
+

1
σ

log
(

Yt/Ȳ
Kt/K̄

)
+

σ −1
σ
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The normalized variables are Ȳ , K̄, L̄, π̄ and t̄ with a bar referring to the sample average, geomet-
ric for the first three and arithmetic for the last two. ξȲ = Y0 is a normalizing constant expected to
be close to unity. A linear trend assumption implies that gK (t, t̄) = γK (t − t̄), gL (t, t̄) = γL (t − t̄) and
a Box-Cox transformation of the growth rates implies that gK (t, t̄) = t̄ γK

λK

(
(t/t̄)λK −1

)
and gL (t, t̄) =

t̄ γL
λL

(
(t/t̄)λL −1

)
. With both trend assumptions, γK and γL are the determinstic trend terms. λK and λL

are the curvature parameters. When this parameter is equal to one, it corresponds to a linear trend, below
one is a decelerating growth rate and above one is an accelerating growth rate. Thus, the linear trend
assumption is nested in the Box-Cox transformation.

B Filter inconsistency test

To evaluate filter performance we would like to know if the filtered state is a reasonably prediction of
the true value. However, as the true state is unknown filter consistency is usually based on information
on the innovations in the observation equation. If the filter is consistent, the standardized forecast errors
will be a zero-mean and homoskedastic white noise process. This can be evaluated either by graphically
inspecting the standardized innovations or (more formally) by considering the Normalized Innovations
Squared test (NIS). The NIS test has the following test statistic:

22Equation systems are most often estimated with non-linear least squares, such as the SUR estimator applied in papers
such as Klump et al. (2007, 2008).

23Leon-Ledesma et al. (2010) find that failure to normalize the equation system leads to a bias of the elasticity towards one.
We refer to Klump et al. (2012) for a review of the literature.
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mt = ε
T
t F−1

t εt , (17)

where Ft is the co-variance matrix of the innovations. If the assumptions are correct, mt will be χ2(1) dis-
tributed, implying that the T period moving average, m̄T , has a T χ2(T ) distribution (applying the ergodic
property of the innovations). Hence, the null hypothesis is E [m] = 1 and can be tested by computing the
moving average of (17) recursively for an increasing sample size and compare the test statistics to the
critical values.

C Simulation evidence

Simulating Box-Cox transformation

As the processes of ΓK
t and ΓL

t are Random Walks, we adjust the Box-Cox transformations such that
gK (t, t̄) = t̄1−λK γK

λK

(
tλK − (t −1)λK

)
and gL (t, t̄) = t̄1−λL γL

λL

(
tλL − (t −1)λL

)
, where t̄ is the sample av-

erage. γK and γL determine the average growth rates and λK and λL the curvature of the growth rates:
Values of the curvature parameters below one correspond to a decelerating growth rate, above one an
accelerating growth rate, and equal to one a constant growth rate. By initializing the first observation to
gK (1, t̄) = t̄1−λK γK

λK

(
1− t̄λK

)
and gL (1, t̄) = t̄1−λL γL

λL

(
1− t̄λL

)
it can be shown by iterating backwards

that ∑
t
k=1 gK (k, t̄) = t̄ γK

λK

(
(t/t̄)λK −1

)
and ∑

t
k=1 gL (k, t̄) = t̄ γL

λL

(
(t/t̄)λL −1

)
, i.e. resembling the Box-

Cox transformations described in Appendix A.
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Table C1: Mean and variance of the simulated variables compared to US data.

US data σ=0.2 σ=0.5 σ=0.9 σ=1.3
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Linear
Kt 2.72 0.83 3.00 0.79 3.01 0.79 3.01 0.79 3.01 0.79
Lt 1.17 2.02 1.48 1.99 1.48 1.99 1.48 1.99 1.48 1.99
Yt 3.07 2.14 3.12 2.09 3.16 2.05 3.18 2.05 3.19 2.06
rt 0.51 2.88 -1.32 9.20 -0.16 4.19 0.15 3.35 0.25 3.16
wt 1.83 1.25 2.21 3.80 1.88 2.28 1.73 1.89 1.66 1.77

BoxCox
Kt 2.72 0.83 2.98 0.80 3.00 0.79 3.01 0.79 3.01 0.79
Lt 1.17 2.02 1.63 1.81 1.54 1.89 1.49 1.92 1.48 1.93
Yt 3.07 2.14 3.69 2.13 3.70 2.12 3.71 2.11 3.73 2.11
rt 0.51 2.88 -0.95 10.16 0.26 3.65 0.66 2.61 0.83 2.47
wt 1.83 1.25 2.40 3.07 2.38 2.57 2.25 2.15 2.18 1.98

10-year averages
Kt 2.72 0.83 3.01 0.79 3.01 0.79 3.01 0.79 3.01 0.79
Lt 1.17 2.02 1.48 1.99 1.48 1.99 1.48 1.99 1.48 1.99
Yt 3.07 2.14 3.10 2.11 3.13 2.06 3.14 2.06 3.14 2.05
rt 0.51 2.88 0.67 6.90 0.29 4.05 0.15 3.31 0.11 3.16
wt 1.83 1.25 1.14 7.96 1.55 2.68 1.65 1.90 1.69 1.77

Notes: The Table shows the mean and variance of growth rate in simulated observed value-added, ∆log(Yt), the
real wage, ∆log(wt), and the real interest rate, ∆log(rt). Median values are reported and compared to the values in
US data.
Source: Data is obtained from PWT and own simulations.

Sensitivity to normalization

Leon-Ledesma et al. (2010) show that the estimated elasticity is biased towards unity if the system es-
timator is not appropriately normalized. A legitimate question to raise is therefore if the state-space
framework is robust to normalization.

The initialization of this simulation study implies that K0 = L0 = Y0 = ΓL
0 = ΓK

0 = 1. As argued by
Leon-Ledesma et al. (2010) the estimates are invariant to normalization with this particular initialization.
In Table C2 we report the median elasticities for different initializations of K0 and r0 for the three different
trend assumptions and σ = 0.5 and σ = 1.3. For all trend assumptions and values of σ , the state-space
framework replicates the median elasticities with high precision and varying initialization only affects the
distance between the 10 and 90 percentiles marginally. This illustrates that the state-space framework is
not sensitive to normalization, which is an important advantage of the state-space framework compared
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Table C2: Estimated median elasticities with the state-space framework for different initializations.

Linear Box-Cox 10-year average
σ= 0.5 σ= 1.3 σ= 0.5 σ= 1.3 σ= 0.5 σ= 1.3

K0 = 1, r0 = 0.4 and Y ⋆
0 = 1 0.51

(0.44;0.61)
1.30

(1.07;1.67)
0.51

(0.43;0.61)
1.29

(1.13;1.53)
0.50

(0.41;0.65)
1.31

(0.95;1.97)

K0 = 5, r0 = 0.05 and Y ⋆
0 = 0.625 0.52

(0.44;0.62)
1.29

(1.06;1.64)
0.51

(0.44;0.62)
1.30

(1.13;1.54)
0.53

(0.43;0.68)
1.29

(0.95;1.96)

K0 = 8, r0 = 0.05 and Y ⋆
0 = 1 0.52

(0.45;0.63)
1.30

(1.06;1.65)
0.52

(0.44;0.62)
1.29

(1.12;1.53)
0.54

(0.44;0.70)
1.28

(0.95;1.90)

Notes: The Table reports the estimated median elasticities in the simulated data by applying the state-space frame-
work and with different initializations of K0 and r0. The results are shown for σ=0.5,1.3 and the three different
trend assumptions. 10 and 90 percentiles are reported in paranthesis.
Source: Own simulations.

to the system estimators.

Sensitivity to the number of observations

To test the sensitivity of the state-space framework to the number of observations, we simulate the data
for time periods between 20 and 70 observations and display the median elasticities and the percentiles
of the distribution (Figure C1). When the trend assumption in the simulated data is the linear or Box-
Cox trend, increasing the number of observations above 30 has primarily gains for the precision of the
estimates (narrower confidence bands). When the trend in the simulated data is the 10-year averages,
it takes around 40 observations before unbiased estimates on the median are obtained. Thus, across the
three trend assumptions, at least 40 observations are necessary to obtain reliable estimates.
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Figure C1: Median estimated elasticities for different number of observations.
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Notes: The graphs show the median estimated elasticitites (y-axis), σ , for different trend assumptions and values
of σ in the data generating process and increasing number of observations, T (x-axis). The state-space framework
is applied and 10 and 90 percentiles lines are reported with a dot indicating the median.
Source: Own simulations.

D Empirical analysis

How different degrees of smoothness affect the elasticity and technical change

Table D2 contains estimates for all the 16 countries with the following noise-to-signal ratios: λ ∈
(1,10,50,100,200,500,10000). On the average, low values of λ imply a relatively low estimate of
σ and high values a high estimate: The unweighted average ranges from 0.24 with λ = 1 to 0.79 with
λ = 10,000. For some countries, the estimate even exceed unity with high degrees of smoothing, e.g.
2.51 in Austria, 2.09 in Japan, 1.49 in Korea, and 1.06 in the US when λ = 10,000. This highlights that
in line with the literature (Klump et al., 2007; McAdam and Willman, 2013; Knoblach et al., 2020), our
findings reiterate the tight link between identifying restrictions on technical change and the elasticity of
substitution. Although our model specification is less parametric and seemingly less a priori restrictive
we do not escape this fact.

For most countries, the estimates are reasonably stable in the range λ ∈ 50−500 with the average only
increasing by 0.07. Consequently, even though the ratio is increased by a factor up to 10, the estimates
are still stable in this certain range, to a lesser extend when λ = 10 also. However, the largest increase is
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Table D1: System estimator estimates of the elasticity of substitution.

Box-Cox system estimator
Time period σ γK γL λK λL ξ

Australia 1959-2019 0.44
(0.00)

−0.001
(0.000)

0.016
(0.000)

−0.63
(0.35)

0.51
(0.04)

1.05
(0.01)

Austria 1976-2019 0.29
(0.00)

−0.002
(0.000)

0.017
(0.000)

−0.29
(0.08)

0.52
(0.03)

1.03
(0.00)

Belgium 1970-2019 0.27
(0.00)

0.002
(0.000)

0.015
(0.000)

2.25
(0.68)

0.26
(0.02)

1.04
(0.00)

Canada 1970-2019 0.34
(0.00)

−0.007
(0.001)

0.011
(0.001)

0
(0.06)

0.47
(0.05)

1.03
(0.00)

Denmark 1970-2019 0.28
(0.00)

−0.001
(0.000)

0.016
(0.000)

−0.56
(0.16)

0.39
(0.02)

1.04
(0.00)

Finland 1970-2019 0.45
(0.00)

−0.004
(0.001)

0.023
(0.001)

−0.11
(0.12)

0.39
(0.04)

1.06
(0.01)

France 1950-2019 0.52
(0.00)

−0.002
(0.000)

0.027
(0.001)

0.73
(0.47)

0.34
(0.02)

1.14
(0.01)

Great Britain 1970-2019 0.44
(0.00)

0.002
(0.001)

0.017
(0.001)

4.12
(1.61)

0.37
(0.06)

1.02
(0.01)

Italy 1970-2019 0.41
(0.00)

−0.009
(0.000)

0.012
(0.000)

0.4
(0.05)

0.08
(0.04)

1.04
(0.00)

Japan 1970-2019 0.4
(0.00)

−0.005
(0.000)

0.02
(0.000)

−0.1
(0.05)

0.37
(0.02)

1.04
(0.00)

Korea 1970-2019 0.78
(0.02)

−0.023
(0.002)

0.064
(0.002)

−0.07
(0.07)

0.53
(0.03)

1.03
(0.01)

Netherlands 1970-2019 0.29
(0.01)

−0.001
(0.000)

0.014
(0.000)

−0.39
(0.26)

0.29
(0.03)

1.04
(0.00)

Norway 1970-2019 0.6
(0.01)

−0.001
(0.001)

0.021
(0.001)

−0.81
(0.52)

0.28
(0.06)

1.06
(0.01)

New Zealand 1971-2019 0.75
(0.02)

−0.008
(0.003)

0.019
(0.002)

−0.16
(0.17)

0.84
(0.17)

0.99
(0.01)

Sweden 1950-2019 0.6
(0.01)

0
(0.001)

0.022
(0.000)

−0.92
(0.55)

0.5
(0.04)

1.05
(0.01)

USA 1950-2019 0.33
(0.00)

0.003
(0.000)

0.017
(0.000)

2.46
(0.35)

0.63
(0.02)

1.02
(0.00)

Mean 0.45
(0.00)

−0.004
(0.001)

0.021
(0.001)

0.37
(0.35)

0.42
(0.04)

1.04
(0.00)

Weighted mean 0.39
(0.00)

−0.001
(0.000)

0.019
(0.000)

1.53
(0.37)

0.5
(0.03)

1.03
(0.00)

Notes: The Table reports the main estimation results of the elasticity of substitution for the 16 OECD countries.
Results are reported for the system estimator with Box-Cox trend. The Table reports the estimated elasticity,
the average growth rates of labor-augmenting technical change, γL, capital-augmenting technical change, γK , the
curvature parameters, λL and λK , and normalization parameter, ξ . Standard errors reported in paranthesis.
Source: Data is obtained from PWT and the OECD STAN database.
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Table D2: Estimation with different noise-to-signal ratios.

λ

1 10 50 100 200 500 10000

Australia 0.09
(0.03)

0.17∗.
(0.03)

0.18∗.
(0.04)

0.2∗.
(0.05)

0.21∗.
(0.05)

0.23∗.
(0.06)

0.29∗.
(0.07)

Austria 0.27
(0.04)

0.39∗.
(0.08)

0.74∗.
(0.38)

0.91∗.
(0.26)

1.05∗.
(0.63)

1.14∗.
(1.82)

2.51∗.
(93.69)

Belgium 0.3
(0.03)

0.34∗.
(0.03)

0.33∗.
(0.03)

0.33∗.
(0.03)

0.33.
(0.04)

0.36.
(0.05)

0.52.
(0.12)

Canada 0.19
(0.02)

0.26∗.
(0.04)

0.27∗.
(0.04)

0.25∗.
(0.04)

0.23.
(0.04)

0.2.
(0.04)

0.16.
(0.06)

Denmark 0.21
(0.03)

0.33.
(0.06)

0.44∗.
(0.06)

0.46∗.
(0.06)

0.46∗.
(0.06)

0.44∗.
(0.05)

0.44∗.
(0.05)

Finland 0.27
(0.05)

0.46∗.
(0.06)

0.51∗.
(0.07)

0.51∗.
(0.08)

0.54∗.
(0.08)

0.55.
(0.08)

0.68.
(0.11)

France 0.13
(0.03)

0.12∗.
(0.05)

0.11∗.
(0.06)

0.11∗.
(0.07)

0.11∗.
(0.08)

0.14∗.
(0.11)

0.74.
(0.42)

Great Britain 0.26
(0.03)

0.34∗
(0.05)

0.36.
(0.05)

0.35.
(0.06)

0.35.
(0.06)

0.36.
(0.09)

1.06.
(13.88)

Italy 0.2∗
(0.05)

0.35∗.
(0.07)

0.48∗.
(0.06)

0.49∗.
(0.07)

0.47.
(0.07)

0.44.
(0.08)

0.25.
(0.22)

Japan 0.18
(0.03)

0.16∗.
(0.04)

0.13∗.
(0.06)

0.1∗.
(0.07)

0.04∗.
(0.11)

0∗.
(0.44)

2.09.
(23.09)

Korea 0.41∗
(0.06)

0.52∗.
(0.06)

0.63∗.
(0.07)

0.65∗.
(0.08)

0.68∗.
(0.09)

0.76∗.
(0.10)

1.49.
(1.68)

Netherlands 0.17
(0.02)

0.23∗.
(0.03)

0.27∗.
(0.04)

0.29.
(0.04)

0.3.
(0.05)

0.31.
(0.05)

0.26.
(0.07)

Norway 0.09∗
(0.02)

0.15∗.
(0.04)

0.11∗.
(0.05)

0.13∗.
(0.06)

0.17∗.
(0.08)

0.19∗.
(0.09)

0.21∗.
(0.15)

New Zealand 0.14
(0.04)

0.28∗.
(0.05)

0.28∗.
(0.06)

0.26∗.
(0.07)

0.25.
(0.07)

0.23.
(0.09)

0.28.
(0.20)

Sweden 0.26
(0.04)

0.32∗.
(0.04)

0.44∗.
(0.06)

0.47∗.
(0.06)

0.51∗.
(0.06)

0.54.
(0.05)

0.68.
(0.06)

USA 0.5∗
(0.06)

0.53∗.
(0.08)

0.64∗.
(0.12)

0.71∗.
(0.14)

0.81∗.
(0.16)

0.94.
(0.18)

1.06.
(0.19)

Mean 0.23
(0.04)

0.31
(0.05)

0.37
(0.08)

0.39
(0.08)

0.41
(0.11)

0.43
(0.21)

0.8
(8.38)

Weighted mean 0.24
(0.04)

0.32
(0.05)

0.37
(0.07)

0.39
(0.08)

0.41
(0.10)

0.44
(0.19)

0.83
(6.38)

Notes: The Table reports for every country the estimated elasticities with different values of the noise-to-signal
ratios, λ . Bold is the estimate with the highest likelihood value. A "*" indicates that the autocorrelation test is
satisfied at the 10 percent level. A "." indicates that the NIS test is within the confidence bands at the 10 percent
level. Zero lags are included in all estimations except for Norway.
Source: Data is obtained from PWT and the OECD STAN database.
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seen when moving from λ = 500 to λ = 10,000 where the average increases with 0.39.
In Table D2, the estimate that maximizes the likelihood is reported in bold. In most cases, these are

in the range 10-100, corresponding well with the estimates in Table 3. In three cases (Great Britain,
Netherlands, and Norway), the estimate with λ = 1 has the highest likelihood. However, all of these are
misspecified, based on the autocorrelation and the NIS test (a “*” indicates that the autocorrelation test
is satisfied, a “.” that the NIS test is satisfied). In two cases, the estimate with λ = 10,000 are preferred,
and well specified. These are Australia and Denmark that also have high values of λ in Table 3.

As the Kalman filter tends to produce serially correlated innovations if the noise-to-signal ratio be-
comes too high, we would expect autocorrelation to show up if the model imply excessive smoothing.
This is also what is observed in Table D2 where the autocorrelation test fails in many cases when λ

exceeds 100. This suggests that an approximately linear trend in the factor-augmenting technical change
is generally too restrictive to describe the persistent variations of technical change. On the other hand, if
our model imply too little smoothing of the relative technical change (λ small) one might expect to reject
the NIS test as the filter can be sensitive to tuning of the measurement noise in particular. From Table
D2, we do find the test for well calibrated innovations to be violated for λ = 1, based on a too low NIS
for all countries. In addition, the autocorrelation test also fails in most cases when λ = 1 indicating that
some degree of smoothing of factor augmenting technical change is necessary to obtain a well specified
model.

In Figure D1, we show the estimated processes of US technical change for different degrees of
smoothing. When λ = 1, the resulting process of relative augmenting technical change is a flexible
process with many year-to-year fluctuations. As λ increases, the process becomes increasingly smooth,
but still feature several persistent shifts in the direction on technical change. When λ = 10,000, the esti-
mated process converges to a process that is closely related to the linear trend, but with several persistent
changes in the average growth rate. The fact that the elasticity estimate is above 1 when λ = 10,000 im-
plies that the estimated growth rate of relative augmenting technical change becomes capital-augmenting
during the entire sample, which seems empirically implausible.
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Figure D1: US relative factor-augmenting technical change, ∆log
(
ΓL

t /ΓK
t
)
, for different levels of

smoothness.
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Source: Data is obtained from PWT and the OECD STAN database.
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