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There exist a number of alignment methods. They typically address the binary case

and they typically put special emphasis on one of the alternatives rather than treating all

alternatives in a symmetric way (for a review, see Li & O’Donoghue, 2014). In this paper

we propose a more general mathematical foundation of multinominal alignment. Mean-

correction alignment is defined as a method that minimizes the information loss in the

adjustment process. The analytical solution to the alignment problem is characterized and

furthermore applied in deriving various properties for the method. It is demonstrated that
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demonstrated that it is at least twice as fast as these methods. Finally, it is argued, that the

method is very easy to implement.
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1 Introduction

Alignment is the core facility for controlling microsimulation models. Microsimulation models

are large, elaborate models that need such a tool at the macro level. Alignment basically works

by manipulating the probabilities of the model, aiming to do model calibration, comparative

analysis (static or dynamic) and/or to eliminate Monte-Carlo noise.

In a more technical sense, alignment can be said to do one of two things: mean-correction or

variance-elimination1. The latter is equivalent to the above mentioned elimination of Monte-

Carlo noise. In microsimulation models, events are typically modeled by drawing a uniformly

distributed number and compering it to a probability that the event happens. This Monte-Carlo

technique introduces noise into the model. Such noise can be eliminated form the model, using

alignment techniques (Baekgaard, 2002). This paper is not dealing with this kind of alignment.

We concentrate on mean-correction. Mean correction is the process by which you manipulate

the probabilities of the individuals such that i) the manipulation is as gentle as possible (dis-

cussed below), and ii) you hit a predefined mean/average propensity for the entire group. This

is a very important facility to have in a model. It makes it possible for you to calibrate the model,

and to do comparative analysis. Calibration is necessary for many reasons[more to come...base

year, region etc.].

Once you have a well-calibrated model and a reasonable base run the next step is to do some

analysis. Here mean-correction alignment is important as well. In most economic models

(CGE, DSGE, SEM etc.) comparative analysis (static or dynamic) is done by changing a few

parameters or exogenous variables (tax rate, labor supply, public demand etc.) and then compare

the new outcome with the base run. Typically this is not the way to do it in a microsimulation

1Or a more general term for both: moment correction, as it corrects the first two moments of the probability

distribution.
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model. The reason is that agent behavior is modeled differently in microsimulation models,

compared to the typical economic model. In a typical economic model, behavior is modeled

either by some estimated structural equations (dependent on prices, tax rates, wages etc.) or by

calibrated demand systems (based on utility/profit-maximizing behavior). In a microsimulation

model, behavior is defined by the estimated transition probabilities. These probabilities will

mostly not depend on economic variables like prices, tax rates and wages (all though they

can), but will be based on characteristics such as gender, age, education, region etc. Therefore

the if/then-questions are different in the different models. Questions you might ask in such a

microsimulation model are: what happens if the education level increases? If the structural

unemployment decreases? In the first case you should somehow align the education system to

produce more students (bigger student uptake, less dropouts). In the second case you should

align the average unemployment propensity.

There exist a number of alignment methods. They typically address the binary case and they

typically put special emphasis on one of the alternatives rather than treating all alternatives

in a symmetric way (for a review, see Li & O’Donoghue, 2014). In this paper we propose a

more general mathematical foundation of multinominal alignment. Mean-correction alignment

is defined as a method that minimizes the information loss in the adjustment process. The an-

alytical solution to the alignment problem is characterized and furthermore applied in deriving

various properties for the method. It is demonstrated that there exits an algorithm called Bi-

Proportional Scaling that converge to the solution of the problem. This is tested against two

versions of the Newton-Raphson-algoritm, and it is demonstrated that it is at least twice as fast

as these methods. Finally, it is argued, that the method is very easy to implement.
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2 What is a good alignment method?

The following is a nice-to-have-list for mean-correction alignment methods:

1. Adjust correctly to the target means.

2. Retain the original shape of the probability distribution.

3. Retain zero probabilities.

4. Symmetric formulation.

5. Multinominal alignment. Should easily generalize to a situation with more than 2 alter-

natives.

6. Ability to work well in a logit environment.

7. Computer efficiency.

8. Easy implementation.

Point 1) and 2) are properly need-to-have’s and are similar to the first 2 points in Li & O’Donoghue(2014).

The basic idea of mean-correction alignment is to be able to change the mean of the probability

distribution. Therefore the method should be precise when it comes to adjusting to a new target

(point 1). Let’s try to make this more precise. Let pia be individual i′s probability of entering

alternative a (i = 1, ...,N and a = 1, ...,A). In a binary model A = 2. Because we are working

with probabilities we should necessary have that

∑
a

pia = 1, i = 1, ...,N
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Let Xa be the number of persons in alternative a (such that ∑a
Xa = N). The expected number

of persons in alternative a is given by:

E [Xa] = ∑
i

pia, a = 1, ...,A

We can now define mean-correction alignment:

Definition 1. Let p0
ia (i = 1, ...,N and a = 1, ...,A) be the initial probabilities in a population. A

mean-correction alignment to a target
(

X1, ...,XA

)

is a set of new probabilities pia, such that:

1. ∑i pia = Xa, a = 1, ...,A

2. ∑a pia = 1, i = 1, ...,N

3. pia ≥ 0, i = 1, ...,N, a = 1, ...,A

According to this definition there is no connection between the initial probabilities and the

aligned probabilities. This is not satisfying and that is why we need 2). We need in some sense

to try to retain the original distribution. To be as gentle and non destructive as possible. A way to

handle this is to define some kind of distribution measure, that measures the difference between

the initial probabilities and the aligned probabilities. Let P be a N ×A matrix containing the

pia−elements. Let D
(

P,P0
)

be our measure. A precise version of 2) would be to minimize

D
(

P,P0
)

given the restrictions in Definition 1. We will return to this optimization problem

later.

The third point deals with zero probabilities. Saying that a probability is zero is a very strong

statement. It means that something is impossible, and that it will never happen. An alignment

5



method should therefore retain zeroes such that what is impossible before the alignment is also

impossible after the alignment.

The fourth point on the list is symmetric formulation. A good example of an asymmetric align-

ment method is multiplicative scaling (Li & O’Donoghue, 2014). According to this kind of

alignment you choose one of the alternatives (let’s say alternative 1) and scale the probabilities

to the desired level:

pi1 = λ p0
i1

where the scaling factor λ is defined by

∑
i

pi1 = ∑
i

λ p0
i1 = X1

If we have two alternatives, the probability of the other alternative is given residually

pi2 = 1− pi1

This is clearly asymmetric. If we had chosen to scale the probabilities of the second alternative

instead, we would have had another alignment. This is not satisfying. The only way to make

sure that the alignment formulation is symmetric, is to make a definition based on all alterna-

tives. A good alignment method should therefore depend on all the initial probabilities and

some parameter vector θa

pia = fa

(

p0
i1, ..., p0

iA;θa

)

, a = 1, ...,A

This is typically not the case in the most used alignment methods (Li & O’Donoghue, 2014).

6



A good alignment technique should generalize easily to the multinominal case (A > 2). As

mentioned above, most alignment methods are binary. Multinominal problems are often solved

by a sequence of binary alignments. It is quite difficult to know precisely what is going on if this

approach is used. It is preferable to have a method that is designed to the general multinominal

case.

3 A multinominal alignment method

In this section we present an alignment method that satisfies all points 1-8 in the last section. We

automatically satisfy 1-3 and 5 by defining the alignment method as a optimization problem.

Define the information loss2 D by using P instead of P0:

D
(

P,P0
)

= ∑
i

∑
a

pialog

(

pia

p0
ia

)

(3.1)

This measure is derived from information theory (Shannon, 1948) and it is suitable on measur-

ing how much the distribution of probabilities are changed by the alignment process. Nowadays

it is often used in machine learning as an alternative to the Gini-measure, when evaluating de-

cision trees (Raileanu & Stoffel, 2004).

We would like to minimize the information loss D given the restrictions from definition 1:

∑
i

pia = Xa, a = 1, ...,A (3.2)

∑
a

pia = 1, i = 1, ...,N (3.3)

2Also called Kullback–Leibler divergence, information divergence, information gain, relative entropy and cross

entropy
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pia ≥ 0, i = 1, ...,N, a = 1, ...,A (3.4)

The restriction (3.2) makes sure that we satisfy 1) in our list (ability to adjust correctly to the

target means). The fact that we minimize the information loss satisfies 2) in the list (ability to

retain the original shape of the probability distribution). ’Symmetric formulation’ and ’multi-

nominal alignment’ come automatically (point 4 and 5).

We can now derive our new alignment method:

Definition 2. Let p0
ia (i = 1, ...,N and a = 1, ...,A) be the initial probabilities in a population.

An Information-Loss-Minimizing Mean-Correction Alignment to a target
(

X1, ...,XA

)

is a set

of new probabilities pia that minimize (3.1), given the restrictions (3.2), (3.3) and (3.4).

And we can prove the theorem:

Theorem 3. Let p0
ia (i = 1, ...,N and a = 1, ...,A) be the initial probabilities in a population.

In an Information-Loss-Minimizing Mean-Correction Alignment the probabilities pia are given

by:

pia =
eϕa p0

ia

∑s eϕs p0
is

where the parameters ϕa satisfies:

∑
a

ϕa = 0

Proof. Define the Lagrange-function L:

L = ∑
i

∑
a

pia

(

log(pia)− log
(

p0
ia

))

−∑
i

λi

(

∑
a

pia −1

)

−∑
a

ϕa

(

∑
i

pia −Xa

)
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The first order derivatives are given by

∂L

∂ pia

=
(

log(pia)− log
(

p0
ia

))

+1−λi −ϕa = 0

such that:

pia = eλi−1eϕa p0
ia (3.5)

Sum over the alternatives a (using (3.3)):

∑
a

pia = ∑
a

eλi−1eϕa p0
ia = 1

such that

eλi−1 =

[

∑
a

eϕa p0
ia

]−1

Inserting this into (3.5) yields:

pia =
eϕa p0

ia

∑s eϕs p0
is

Observe that the Lagrange-parameters ϕa are not unique, as

eϕa p0
ia

∑s eϕs p0
is

=
ex+ϕa p0

ia

∑s ex+ϕs p0
is

We can therefore assume that

∑
a

ϕa = 0

Observe that pia ∈ [0,1] and that 3) is satisfied (retaining zero).
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3.1 Logit Scaling

The alignment method could alternatively be called Logit Scaling. The method fits perfectly

to a situation where the initial probabilities are supplied from a logit-model (point 6 in the

nice-to-have-list). Assume the probabilities are given by

p0
ia =

eVia

∑s eVis

where Via are some logit-utilities. Then according to theorem 3:

pia =
eϕa+Via

∑s eϕs+Vis

The alignment is done by adding alternative-specific constants to the logit-utilities. As a corol-

lary to this, if the taste of the agent are changed in an additive way, the probabilities can be

corrected with alignment. This is similar to the result in Li & O’Donoghue(2014) where it is

shown that a “biased intercept” in a logit model can be corrected with some of the aliment meth-

ods (“Sidewalk hybrid with non linear adjustment” and “Sort by the difference between logistic

adjusted predicted probability and random number”). Here we give a mathematical explanation.

3.2 Bi-proportional scaling: An algorithmic solution

The alignment method seemed to have some nice properties, but how about the practical side of

the equation? We need to solve the following problem: choose parameters ϕa, a = 1, ...,A, such

that:

∑
a

ϕa = 0
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∑
i

eϕa p0
ia

∑s eϕs p0
is

= Xa, a = 1, ...,A−1

This is A non-linear equations with A unknown. As A typically are rather small (2 to 10), this is

not a big equation system. But from a computational point of view it is a problem that we sum

over the number of individuals i. This can be a very big number (up to millions). We therefore

need a fast algorithm.

One approach is to set up a Newton-Raphson algorithm. This implies the calculation of the

so called A×A Jacobi-matrix in each iteration. Each element in this matrix is a sum over all

individuals. This can be done, and actually work pretty well.

But there is another way that is considerably faster: Bi-proportional scaling. Look at the origi-

nal problem: minimize (3.1) given (3.2) and (3.3). This is actually a Matrix Balancing Problem

(Schneider & Zenios, 1990). Instead of the initial matrix P0 we should choose another matrix

P, such that the difference between the matrices are as small as possible (3.1), and such that the

row sums are given (3.3) and the column sum are given (3.2). It is well known (McDougall,

1999) that if the measure of difference between the matrices is Information-Loss (or gain as it

typically is defined as), then there exists a simple algorithm that converge to the solution to the

matrix balancing problem. This algorithm is called bi-proportional scaling: First you scale the

rows such that the row sums are correct. Then you scale the columns such that the column sums

are correct (but then you destroyed the row sums). You repeat this until the system converge. In

real world problems the convergence is very fast (often less than 10 iterations).

The method was tested against two versions of the Newton-Raphson algorithm, a standard ver-

sion and an optimized version (see table 1). In the standard version, the Jacobi matrix was

calculated based on an abstract differentiation of the non-linear equation system. In each iter-

ation the elements in the matrix was calculated by an average over all individuals. The matrix
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Seconds used

Newton-Raphson (Standard) 3.94

Newton-Raphson (Optimized) 1.45

Bi-Proportional Scaling 0.60

Table 1: Speed test. Comparing Bi-proportional scaling with two Newton-Raphton algorithms

(N = 1.000.000, A = 4).

was inverted using the C#-library Math.Net. In the optimized version, the procedure was the

same except for the calculation of the Jacobi matrix. The elements in the matrix was averaged

over a sample of 10 pct. of the individuals. This improved the speed with only very modest

effect on the precision. The artificial population was 1.000.000 individuals and there was 4

alternatives. Bi-proportional scaling ran twice as fast as the optimized Newton-Raphson, and

mere than 6 times faster than the standard Newton-Raphson.

The final point on the list is ease of implementation. It took more than a week to develop and

test the Newton-Raphson algorithms. When the idea came to the author, it took half an hour to

code bi-proportional scaling, showing the power of the approach.
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