
An Introduction to Numerical Optimization Methods
and Dynamic Programming using C++

Toke Ward Petersen¤

June 5th 2001

Abstract

This appendix contains a short introduction to numerical methods and describes
how to solve …nite horizon dynamic programming in C++.

¤Statistics Denmark and University of Copenhagen. E-mail: toke.ward.petersen@econ.ku.dk.

1

Contents
1 Introduction 3

2 Optimization methods 3
2.1 Analytic methods . 4
2.2 Gradient based numeric methods . 5

2.2.1 Initial phase . 6
2.2.2 Find the ”descent direction” . 7
2.2.3 Line search: successive step-size increase 7
2.2.4 Second iteration . 8
2.2.5 Advantages and disadvantages of the gradient based method 10

2.3 Discrete numeric methods . 10
2.4 Summary . 12

3 Deterministic dynamic programming 13
3.1 The basic savings problem . 13

3.1.1 Step one: identify state and control variables 13
3.1.2 Step 2: Solve the last period . 14
3.1.3 Step 3: The second-last period . 15
3.1.4 Step 4: The period before the second last period (here the …rst period) 17
3.1.5 Results . 19

4 An implementation of the savings problem in C++ 20
4.1 Initialize program . 21
4.2 Initialize grid . 22
4.3 Calculate the last period . 22
4.4 Calculate all other periods recursively in a loop 23
4.5 Display results . 24
4.6 Output from the program . 25
4.7 Acceleration . 26
4.8 Addendum: source code for the deterministic program 27

2

1 Introduction

This appendix contains a short introduction to numerical methods and describes how to

solve …nite horizon dynamic programming in C++. The purpose is to give an idea of how

Dynamic Programming is carried out in practice; hopefully this will equip the reader to

understand the way more complicated models are solved.

The …rst section describes various optimization methods used in applied economics, with

particular focus on the grid-optimization techniques used when doing dynamic program-

ming. The second section shows the practical work involved in solving a simple dynamic

programming problem. The problem is very simple and could in principle be solved in

a spread-sheet - however the purpose is to explain the technique, and for this purpose a

simple example is better. The last section shows how the described method for solving a

simple deterministic model can be implemented in C++.

2 Optimization methods

The purpose of this section is to present the various approaches to optimization that can

be used in applied work. We will consider 3 methods of obtaining the solution to the

optimization problem: by i) analytic means ii) using gradient based numerical methods

and iii) using discrete optimization techniques. The latter method will be employed later

when doing numerical dynamic programming.

To keep the problem simple and keep the focus on the techniques, we look at the problem

of …nding a solution to the maximization problem:

max f (x) = ¡1
4
x2 + 8x+ 25

which for the interval [0; 30] is shown in Figure 1 below:

3

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Figure 1. The polynomial ¡1
4x

2 + 8x+ 25.

As the …gure shows the polynomial has one unique maximum. Clearly the methods

described below work with higher dimensional problems, but the very simple maximization

problem above serves a useful point of departure when demonstrating the method.

2.1 Analytic methods

The analytic approach to solving the problem uses the problem’s …rst order condition.

Di¤erentiation yields:

0 =
d
dx

µ
¡1
4
x2 + 8x+ 25

¶
(1)

0 = ¡1
2
x+ 8

x = 16

Clearly this is a very fast way to …nd the solution in the example above. Unfortunately

it requires that the system of equations of …rst order conditions rf = 0 (here it is just

one equation with one unknown) can be solved; this is not always an easy task.

Obtaining an analytic solution can often require large amounts of calculations and alge-

braic manipulation. However, often the analytic solution in itself has no interest - it is

only used as an tool to calculate the solution for speci…c numeric values. From an overall

perspective it may therefore be more e¢cient to calculate the solution using numerical

methods right away.

4

The analytic method is a direct method in the sense that we get the correct solution right

away using the formula above. The numeric methods presented below are all iterative:

they do not get the correct solution immediately, but rather start with one solution and

improve it a bit at a time. This is a procedure that is repeated a number of times until

the found solution converges.

Numeric methods can be divided in two groups depending on how the search procedure

determines where to search for the solution. The …rst group relies on information about

the gradient to determine the descent1 direction (i.e. use numeric computed derivatives for

the search procedure), whereas the second group uses other methods to …nd the direction

in which the objective function improves. In the next subsection we will look at each of

these methods in turn.

2.2 Gradient based numeric methods

A gradient based (or gradient related) method proceeds in the following way:

1. Choose some initial value to get the search procedure started. If a good guess is

available this should be used.

2. Determine the direction that improves the objective function by using information

about the derivative in the initial point. Compute the …rst derivative of f in this

point (in more advanced methods the second derivative is also computed or approx-

imated somehow to capture the curvature of the function), and prepare to go in this

direction to look for the optima.

3. Determine how far to move in this direction - exactly how long is determined by a

so-called step-size rule. Check if the objective function has increased in this new

point - otherwise choose a smaller step-size until a reasonable improvement has been
1It is customary in the numerical analysis literature to consider the problem of (cost) minimization

instead of maximization. In this case the term descent direction refers to the ”downhill” direction in a
minimization problem. Here the term is used to refer to the direction in which the objective function
gets ”better” (here: increases, but in the classic case of minimization decreases) no matter if we analyze
a maximization or a minimization problem.

5

made. If on the other hand the objective function increases then proceed further in

this direction until further steps cease to increase the objective value.

4. Use this new found point as initial value in the next iteration. Go to step 2.

5. If there is no improvement (or the step-size is below a certain threshold) stop the

iterations: then the local optima may have been found.

This method can be improved in many directions - however this a topic for a separate

volume, and the interested reader should consult ?. Notice that while the outline above

captures the main points it also leaves out many details.

Next is a demonstration of how the method works on the problem outlined above - using

a particularly simple type of gradient related method called the steepest descent method.

The idea in the steepest descent method is to move in the direction where the objective

function changes the fastest (= the gradient is the steepest). In general this is not the most

e¢cient method in terms of the number of iterations required to arrive at the solution2,

but the method is very easy to explain. For the line-search and step-size rule mentioned

in point 3 above we will use a geometric step-size rule (explained below).

2.2.1 Initial phase

First we must choose an initial value for the search. Here we choose x0 = 5 as a candidate

(the superscript refers to the iteration number). With this particular function the choice

of initial value does not matter, but in general some degree of ”luck” is necessary when

choosing an initial value.
2Although in this one-dimensional case the method’s weakness is not apparent. In two dimensions

however, it is quite easy to demonstrate why steepest descent can require an excessive number of iterations.
See ?

6

2.2.2 Find the ”descent direction”

Next we must determine the numeric derivative in f (x0). Here we use the central ap-

proximation (?) and compute f 0 (x0) as

f 0
³
x0

´
=
f (x0 + ±) ¡ f (x0 ¡ ±)

2±
(2)

which for ± = 0:1 gives f 0 (x0) = 5:5: The direction of the gradient is illustrated with the

dotted line in Figure 2 below:

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Figure 2. Initial point x0 = 5 at …rst iteration (gradient in dotted line).

In this simple one-dimensional case the direction is also one-dimensional, and the steepest

descent direction is either to the left or to the right. Here the criteria function increases

when we move to the right.

2.2.3 Line search: successive step-size increase

Now we know the direction to search (to the right of the initial point, since the derivative

is positive), but not how far in this direction it is optimal to move - this problem is

called line search. Here we will use a simple geometric series rule (this is a variant of the

diminishing step-size rule) where the initial step length is given by Á. Then try a longer

(or shorter) step-size depending on whether the function evaluated in the initial candidate

point improves the objective value (or not) compared to the initial point. Here Á = 5

which means that the …rst candidate iterate x1 = x0 + Á = 10.

7

Next we must check whether this causes an increase in the criteria function, i.e. whether

f (x1) > f (x0) which is the case since f (x1) = 80:00 and f (x0) = 58:75: Since the step

caused an increase in the criteria value we then try to proceed in the same direction (to

the right) with a larger step length than 5 - a step length that increases for each iterate

candidate. For the n’th step the next iterate candidate is found using the formula:

x1+ = x0 + Á
³
¼n¡1

´

where ¼ = 1:25: This gives the following series of step lengths and iterates:

n 1 2 3 4 5 6
¼n 1 1.250 1.5625 1.9531 2.4414 3.0518
Á (¼n) [step length] 5 6.250 7.8125 9.7656 12.2070 15.2588
x0 + Á (¼n) [iterate cand idate] 10 11.250 12.8125 14.7656 17.2070 20.2588
f (x0 + Á (¼n)) [ob jective] 80.00 83.3594 86.4600 88.6191 88.6358 84.4657
marginal improvement 21.2500 3.3594 3.1006 2.1591 0.0167 -4.1701

The table shows that the marginal improvement in the criteria function becomes negative

after iteration number 5 (at x5 = 17:207), which means that our line search should stop

here, and the next iterate should be x1 = 17:207. The various trial iterates are shown

with a black box in the …gure below:

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Figure 3. Iterates at the …rst iteration (gradient in dotted line).

2.2.4 Second iteration

The second iteration uses x1 = 17:207 as the initial point. Once again we compute the

derivative using equation (2), which with ± = 0:1 gives f 0 (x1) = ¡0:6035; which is shown

8

in Figure 4 below.

88

89

90

15 16 17 18

Figure 4. Initial point x1 = 17:207 at second iteration (gradient in dotted line).

Having determined the direction to move (left since the derivative is negative) we must

determine the step length. As before we use an initial step-size of 5, but since we move

in the opposite direction then Á = ¡5: First we try the full step (length 5) which implies

x2 = 17:207 ¡ 5 = 12:207 with f (x2) = 85:4033: Compared to f (x1) = 88:6358 this is a

decrease in the objective function, and therefore we start by decreasing the step size until

an improvement is found. This is done using the iterate candidate rule:

x1¡ = x0 + Á
³
¼¡(n¡1)

´

which implies the following sequence of step lengths and iterates:

n 1 2 3 4 5 6 7 8³
¼¡(n¡1)

´
1 0.8 0,6400 0,5120 0,4096 0,3277 0,2621 0,2097

Á
³
¼¡(n¡1)

´
[step length] 5 4 3.2 2.5600 2.0480 1.6384 1.3107 1.0486

xn [iterate candicate] 12.207 13.207 14.007 14.647 15.159 15.569 15.896 16.158
f (xn) [ob jective] 85.403 87.050 88.007 88.542 88.823 88.9545 88.997 88.994
marg. improvement -3.233 1.647 0.957 0.535 0.281 0.130 0.049 -0.004

From the table we see that the improvement in the criteria function stops after the 7th

step, and therefore x2 = 15:896 with f (x2) = 88:9973:

We could continue this process a number of time more, and would end up getting iterates

that are converging to the true solution. In the table below the series of iterates using

the method is listed:

9

n xn f (xn) jxn ¡ xn¡1j j f (xn) ¡ f (xn¡1)j
0 5:0000 58:75 ¡ ¡
1 17:2070 88:6358 12:270 30:8858
2 15:8963 88:9973 1:3107 0:36150
3 16:00886999 88:99998 0:11257 0:002480

As the table shows convergence is achieved reasonably quickly in the case considered here

(the true value is x¤ = 16 and f (x¤) = 89). We can measure the convergence of the iterates

by the metric jxn ¡ xn¡1j or the convergence on the function value j f (xn) ¡ f (xn¡1)j.

2.2.5 Advantages and disadvantages of the gradient based method

The success of the gradient based methods depend on many factors, but of particular im-

portance is how well-behaved the function we seek to maximize is: the more well-behaved

the better the results. A second problem, is the requirement that the function must be

once (or twice) continuously di¤erentiable. Depending on the economic problem at hand

this condition may be impossible to meet - in particular if one wants to analyze more re-

alistic problems with kinked budget sets or discrete choice sets. A more practical problem

is that the method requires a lot of programming …nesse: for the solution procedure to

work properly, it is often not enough to implement a basic version of Newton’s method

from a numerical analysis book such as ?. For the routine to work properly there are

many details and special cases during the solution, that need to be taken care of.

2.3 Discrete numeric methods

The second numeric approach to …nding a solution is a grid search procedure - this method

does not rely on gradient information to determine which direction the search should

proceed. Rather the method relies on bracketing the solution in a interval that decrease

in length for each iteration - the classic one-dimensional example is the Golden Section

method (?, page 605). This class of methods may be slow and ine¢cient, but will arrive

at a solution no matter how ill-behaved the problem at hand may be (but if the problem

is very ill-behaved however, the solution found may not be the global optima). In return

10

the method requires more function evaluations to arrive at a solution.

Discrete optimization techniques have less mathematical …nesse than the gradient based

procedures, and rely more on heuristics. The method that will be presented here is

particularly simple: grid optimization. The idea is to evaluate the function in a number

of points in the initial interval and determine an interval in which the optima is believed

to be located (if this interval is shorter than the initial interval we have made progress,

and are closer to the solution). Afterwards this procedure is repeated a number of times

until the interval in which the solution is located is smaller than some predetermined

tolerance.

To illustrate the method we will …rst need a lower and upper bound for the search. Here

we pick the interval -100 to 100 and divide it into 11 equidistant grid points, and evaluate

the function in each point:

x -50 -40 -30 -20 -10 0 10 20 30 40 50
f (x) -1000 -695 -440 -235 -80 25 80 85 40 -55 -200

The table shows that the largest function value on the grid is x = 20; but we do not

know if the optima is in the interval [10;20] or [20;30]. Therefore we must next repeat the

procedure on the interval [10;30] and get:

x 10 12 14 16 18 20 22 24 26 28 30
f (x) 80 85 88 89 88 85 80 73 64 53 40

after which it appears that the optimum is located between 14 and 18. Once again we

re…ne the grid to the interval [14;18] and get:

x 14.0 14.4 14.8 15.2 15.6 16.0 16.4 16.8 17.2 17.6 18.0
f (x) 88 88.36 88.64 88.84 88.96 89 88.96 88.84 88.64 88.36 88

This time the maximum is bracketed between 15.6 and 16.4, and further iterations would

decrease this interval. In this case it is a coincidence that the optimal value happens to

be on the grid.

11

This procedure of successively re…ning the interval containing the solution continues for

a couple of iterations more, and information about each iteration is shown in the table

below:

iteration min max mean interval length f(mean)
0 -50 50 0 10 25
1 10 30 20 2 85
2 14 18 16 0.4 89
3 15.6 16.4 16 0.08 89
4 15.92 16.08 16 0.016 89
5 15.984 16.016 16 0.0032 89

With the number of grid points chosen above, the interval that contains the solution

decreases to 1
5 for each iteration. Thus we have a fairly good approximation after 5

iterations, where the solution is 16 § 0:0032 which is equivalent to 16 § 0:02%.

The method can be re…ned in a number of ways. Clearly the number of grid points

in‡uences the solution time in a linear fashion, which suggests that the fewer the number

of grid points the better. However too few grid points increases the likelihood that the

grid-points may miss the true global optima, and instead …nd a local optima. This kind

of problem can of cause occur at any grid density, but is more likely to happen with few

grid points (in particular if the function is ill-behaved). This leads to a discussion of

”how few is few” and what is a suitable number of grid points. This is where heuristics

and experience comes in: these parameters depend on the problem at hand and how

well-behaved it is, and these parameters need to be set by experimentation.

2.4 Summary

The three methods presented above have their strengths and weaknesses. For the purpose

of doing dynamic programming of realistic economic models, the requirement that func-

tions must remain di¤erentiable, is di¢cult to meet in practise. The only method that

allows this, is the discrete optimization method, that also for other reasons turns out to

be useful when doing dynamic programming.

12

3 Deterministic dynamic programming

This chapter describes the practical aspects of the deterministic dynamic programming

method - with the emphasis on applied, leaving the rigorous mathematical technicalities

to ?. As the section’s name suggests, this description is meant for beginners without any

knowledge of the practical workings of dynamic programming.

3.1 The basic savings problem

The simplest application of dynamic programming is the classical savings problem: an

agent endowed with some initial amount of money lives for several periods and must

decide when to use his money. For simplicity we assume that the agent lives for 3 periods.

The agent’s only decision is how much to consume in each of the three periods, which is

equivalent to the problem of how much to save between periods (since the non-negativity

constraint on asset holdings means that forgone consumption equals savings).

To be more speci…c, the utility function of the consumer is to maximize the time-separable

utility function:

U (c1; c2; c3) =
X

i=f1;2;3g
¯i¡1

p
ci (3)

where ¯ = 0:9 is the one period discount factor. In addition the consumer faces the

budget constraint

M = c1 + c2 + c3 (4)

where M > 0 is the agent’s initial income, as well as the non-negativity constraints

ci > 0 (8i). Notice that for simplicity the interest rate on savings is zero.

3.1.1 Step one: identify state and control variables

Clearly a closed form solution can be found to this problem using the Lagrange method,

but we will proceed with numerical dynamic programming. The …rst step is to identify

which are the state and control variables of the problem. Here assets is an obvious

candidate for a state variable: at any point in time the utility from the remaining periods

13

of life depends on the assets; it does not depend on past or present consumption. There are

two possible choices of control variable: either end-of-period assets (which together with

the start-of-periods assets implicitly gives the size of the consumption) or the consumption

(which together with the start-of-period assets implicitly gives the end-of-period assets).

The solution is the same no matter what method is used. However from a practical

perspective choosing end-of-period assets as the control variable makes it easier to solve

the model. Thus with the state variable being the beginning-of-period assets and the

control variable being the end-of-period assets, the consumption in the period can be

calculated as the di¤erence between the two. The transition for the state variable is also

quite simple, since the previous period’s control variable (end-of-period assets) becomes

next period’s state variable.

Before we can solve the problem using dynamic programming the problem must be for-

mulated recursively. We can rewrite the problem using a recursive formulation:

Vi (Mi¡1) = max
ci;Mi

[
p
ci + ¯Vi+1 (Mi)] (5)

st : Mi =Mi¡1 ¡ ci

Notice that the end-of-period notation is used for assets: thus the beginning of period

assets in the …rst period (V1) are denoted M0. Since there are only 3 periods we can set

V4 = 0.

3.1.2 Step 2: Solve the last period

Next we start by considering the last period: consider the agent who reaches the last

period with some beginning-of-period assets M2. Assets left behind yields no utility, and

therefore the optimal decision for the agent in the last period is to consume everything -

an optimality condition that is not surprising.

Next we compute V3(M2) which is the utility level for an agent in the last period with the

beginning-of-period assets M2. This value is computed for selected values of M2 2 [0; 5];

and this interval is divided into 6 equidistant nodes.

Since we know that the optimal decision for the agent in the last period is to consume

14

everything, we have that

V3 (M2) =
q
M2 (6)

since as noted M2 = C3. Plotting these values in a table is quite straight-forward:

Optimal solutions in the last period:
M2 0 1 2 3 4 5
M3 0 0 0 0 0 0
C3 0 1 2 3 4 5p
C3 0 1 1.414 1.732 2 2.236

V3(²) 0 1 1.414 1.732 2 2.236

(7)

Thus we have the choices that maximize V3 (M2) for various values ofM2 (here sampled in

6 points). In other words, we have the optimal actions for a consumer in his last period,

given his asset holdings when the period begins. With this solution to the last period

problem, we can continue to the second last period.

3.1.3 Step 3: The second-last period

Having solved the problem for the last period for given values of beginning-of-period assets

M2, we have knowledge about V3(M2) as well as the associated optimal choices for the

last period. Armed with this knowledge, we begin solving the problem of the second last

period. For this period the problem is:

V2 (M1) = max
c2;M2

[
p
c2 + ¯V3 (M2)] (8)

st : M2 =M1 ¡ c2

Again we take an numeric approach to solving the problem: we discritize M1 into 6 grid

points as before and compute the utility maximizing optimal choices for these points. As

there is one state variable (M1) and one control variable (M2) we need to search through

all combinations ofM1 andM2 that give a feasible (=non-negative) value of consumption,

and for each M1 to determine the optimal policy.

15

We start by computing the consumption level implicitly associated with the choice of M2

for a given level of M1:

consumption M2= 0 M2= 1 M2= 2 M2= 3 M2= 4 M2= 5
M1= 0 C2 = 0 infes. infes. infes. infes. infes.
M1= 1 C2 = 1 C2 = 0 infes. infes. infes. infes.
M1= 2 C2 = 2 C2 = 1 C2 = 0 infes. infes. infes.
M1= 3 C2 = 3 C2 = 2 C2 = 1 C2 = 0 infes. infes.
M1= 4 C2 = 4 C2 = 3 C2 = 2 C2 = 1 C2 = 0 infes.
M1= 5 C2 = 5 C2 = 4 C2 = 3 C2 = 2 C2 = 1 C2 = 0

(9)

Notice that the …elds above the diagonal are infeasible: since there is no income it is

not possible to choose end-of-period assets that are higher than the beginning-of-period

assets.

This matrix of present consumptions has the associated present period utility levels (given

by the transformation U (x) =
p
x):

present utility M2= 0 M2= 1 M2= 2 M2= 3 M2= 4 M2= 5
M1= 0 0 infes. infes. infes. infes. infes.
M1= 1 1 0 infes. infes. infes. infes.
M1= 2 1:414 1 0 infes. infes. infes.
M1= 3 1:732 1:414 1 0 infes. infes.
M1= 4 2 1:732 1:414 1 0 infes.
M1= 5 2:236 2 1:732 1:414 1 0

(10)

and with tomorrow’s utility given by the term ¯V3 (M2) given by ¯ times the value V3(M2)

taken from (6). This gives the following values for V2(M1):

V2(M1) M2= 0 M2= 1 M2= 2 M2= 3 M2= 4 M2= 5
M1= 0 0 - - - - -
M1= 1 1.000 0.900 - - - -
M1= 2 1.414 1.900 1.273 - - -
M1= 3 1.732 2.314 2.273 1.559 - -
M1= 4 2.000 2.632 2.687 2.559 1.800 -
M1= 5 2.236 2.900 3.005 2.973 2.800 2.012

(11)

The table above should be read the following way: given the beginning-of-period assets

M1 (given by the row) the agent can choose between a number of end-of-periods assets

M2 (given by the column) that implicitly de…nes the consumption in the period as well as

16

future utility from the choice of end-of-period assets. This value is given by equation (8)

as the sum of the utility of present consumption and discounted value of utility from the

end-of-period asset holdings. For example the value of 2.632 in row M1 = 4 and M2 = 1

is the sum of the utility of consuming 4 ¡ 1 = 3 units now (=
p
3 = 1:732) plus the value

of V3(M2 = 1) = 1 discounted by ¯ = 0:9, i.e. 1:732 + 0:900 = 2: 632. Another example

is the row M1 = 1: here the choice is between consuming the unit now (and gaining the

utility
p
1) or saving the unit for one period and then consuming it (which also would

give the
p
1 in utility but discounted one period, i.e. a total of 0:9). Not surprisingly the

utility from consuming the unit now is higher.

The problem for the consumer is now for given beginning-of period assets (M1) to choose

the end-of-period assets (M2) to achieve the maximum utility: in other words to choose

the set of control variables that maximize the value in each row of table (11). In the table

these optimal choices are shown in a box, and the optimal policy response to the various

initial values are:

Optimal solutions in the second-last period:
M1 0 1 2 3 4 5
M2 0 0 1 1 2 2
C2 0 1 1 2 2 3p
C2 0 1 1 1.414 1.414 1.732

V2(²) 0 1 1.900 2.314 2.687 3.005

(12)

This completes the computations for period 2; now we know the utility levels and the

optimal policy choices for given values of initial assets (in the table above)

3.1.4 Step 4: The period before the second last period (here the …rst period)

Having solved the second-last period the next step is to solve the period before the second-

last period - which in the present 3-period model happens to be the …rst period. However

the techniques employed would have been the same whether one solves a model with 3 or

60 periods.

With the new knowledge of V2(M1) the next step is to solve the problem V1(M0) - the

17

problem faced by the consumer in the initial period. Similar to before the problem for

the consumer is:

V1 (M0) = max
c1;M1

[
p
c1 + ¯V2 (M1)] (13)

st : M1 =M0 ¡ c1

where we again discritize M1 into 6 grid points and …nd the utility maximizing optimal

choices. Just as before we must search through all feasible combinations of M1 and M2

for the optimal solution.

Once again we start by computing the consumption level implicitly associated with the

choice of M1 for a given M0:

consumption M1= 0 M1= 1 M1= 2 M1= 3 M1= 4 M1= 5
M0= 0 C2 = 0 infes. infes. infes. infes. infes.
M0= 1 C2 = 1 C2 = 0 infes. infes. infes. infes.
M0= 2 C2 = 2 C2 = 1 C2 = 0 infes. infes. infes.
M0= 3 C2 = 3 C2 = 2 C2 = 1 C2 = 0 infes. infes.
M0= 4 C2 = 4 C2 = 3 C2 = 2 C2 = 1 C2 = 0 infes.
M0= 5 C2 = 5 C2 = 4 C2 = 3 C2 = 2 C2 = 1 C2 = 0

(14)

Once again …elds above the diagonal represent infeasible combinations that does not

satisfy the budget constraint.

The associated present period utility levels associated with these consumption levels are

given by the p -transformation:

present utility M1= 0 M1= 1 M1= 2 M1= 3 M1= 4 M1= 5
M0= 0 0 infes. infes. infes. infes. infes.
M0= 1 1 0 infes. infes. infes. infes.
M0= 2 1:414 1 0 infes. infes. infes.
M0= 3 1:732 1:414 1 0 infes. infes.
M0= 4 2 1:732 1:414 1 0 infes.
M0= 5 2:236 2 1:732 1:414 1 0

(15)

Notice that the values inside the tables above are identical to the tables for the previous

period - only the indices change.

Finally we add to the present utility the term ¯V2 (M1) given by ¯ times the value V2(M1)

taken from (13). This gives the following values for V1(M0):

18

V1(M0) M1 = 0 M1 = 1 M1 = 2 M1 = 3 M1 = 4 M1 = 5
M0 = 0 0 ¡ ¡ ¡ ¡ ¡
M0 = 1 1:000 0:900 ¡ ¡ ¡ ¡
M0 = 2 1:414 1:900 1:710 ¡ ¡ ¡
M0 = 3 1:732 2:314 2:710 2:083 ¡ ¡
M0 = 4 2:000 2:632 3:124 3:083 2:418 ¡
M0 = 5 2:236 2:900 3:442 3:497 3:418 2:704

(16)

where once again the utility maximizing optima per row is shown in bold and in a thin

box. This information can be summarized in a table with the optimal choices for given

values of initial assets (M0):

Optimal solutions in the …rst period: (17)
M0 0 1 2 3 4 5
M1 0 0 1 2 2 3
C1 0 1 1 1 2 2p
C1 0 1 1 1 1.414 1.414

V1(²) 0 1.000 1.900 2.710 3.124 3.497

(18)

This …nishes the computations associated with the consumer’s problem; now we know the

optimal actions for consumer depending on initial assets. Combining the information in

(17), (12) and (7) we have the complete solution to the consumer’s problem. For instance

a consumer starting with initial assets of 5 will consume 2 units and save 3 [we get this

information from (17)], consume 2 units in period 2 and save 1 [we get this information

from (12)], and …nally in the last period consume 1 [the optimal behavior in the last

period can be seen from table (7)].

3.1.5 Results

At last we arrive at the solution to the consumer’s problem at the …rst period: the table

above (17) shows the optimal choices of consumption and savings in the …rst period

for various values of initial assets (M0). The utility for a consumer with these initial

combinations of assets are given by the value function V1(M0) and are plotted in the

…gure below with black diamonds:

19

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1 2 3 4 5

6 points

21 points

101 points

Figure 5: V1(M0) for various grid sizes.

The …gure shows the value function in the …rst period, V1 (M0), for various grid resolutions:

6, 21 and 101 mesh points corresponding to distance between mesh-points of 1.00, 0.25

and 0.05. Notice that more points in the grid makes the approximation better. What the

…gure does not tell, is that there is a trade-o¤ between level of detail and speed, since

the number of function evaluations requires varies. With 6 mesh points the u(ci) =
p
ci

function must be evaluated 83 times, with 21 points a total of 908 times (10 times more),

and with 101 mesh points 20508 times (246 times more). For a small size problem such

as the present, this represents no problem, but for a large-scale problem this may be a

concern.

4 An implementation of the savings problem in C++

The problem outlined above can easily be solved by hand or for instance in a spread-sheet.

However solving more complicated models can only be done using proper programming

methods. Therefore it makes more sense to start of using C++ right away, since it will

prove to be the right choice later3 when solving more complex models.4 This section

outlines a program that can solve the problem above - and easily be extended to solve

more di¢cult problems. This section can be skipped by readers who are not interested in
3It could also be argued that Fortran, Matlab or Gauss (etc.) is the right choice. Here C++ is

chosen - this choice is a matter of taste.
4Recommended readings to get started with C++ include ? and ?. Text books with focus on numerics

and mathematics are ? and ?.

20

looking at source code, since some notion of C++ is required.

The program will contain the following steps:

1. Initialize program

2. Initialize grid

3. Calculate last period

4. Calculate all other periods recursively in a loop

5. Display results

4.1 Initialize program

First, we must initialize the C++ program and include various libraries:

//Value function iteration in C++

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

Secondly, we must de…ne the size of the grid: here containing 6 equidistant points between

0 (ASSET_MIN) and 5(ASSET_MAX):

//Compiler directive definitions:

#define PERIODS 3

#define ASSET_GRID 6

#define ASSET_MAX 5

#define ASSET_MIN 0

#define beta 0.9

21

Thirdly we must de…ne matrices to save the results. Notice that Vmax and the associated

optimal consumption level Cmax are of the type double, whereas Amax (the optimal choice

of end-of-period assets) is an index on the grid, and therefore an integer. Saving the grid

point’s index, instead of its associated value, saves resources.

//Define matrice to save the results in

double Vmax[PERIODS+1][ASSET_GRID];

int Amax[PERIODS+1][ASSET_GRID];

double Cmax[PERIODS+1][ASSET_GRID];

The last part of the initialization is to de…ne the utility function u (x) =
p
x as a function:

//define function prototype for utility function

double u(double x) {return pow(x,0.5);}

4.2 Initialize grid

Next we must initialize the grid. This is done …lling the vector Asset[i] with the numeric

value associated with the i’th grid point on the asset grid. In this case the points are

equidistant - with the distance between points given by the formulae below:

int main(){

int t,i, from, to;

//define and initialize asset grid:

double Asset[ASSET_GRID];

for(i=0;i<ASSET_GRID;i++) Asset[i] =

(double)i*(ASSET_MAX-ASSET_MIN)/(ASSET_GRID-1)+ASSET_MIN;

4.3 Calculate the last period

Finally we have the ingredients for computing the last period utility for assets on the grid.

As argued above we know that the solution isM2 = C3 and therefore that V3 (M2) =
p
C3.

22

The procedure is quite simple: for each element in the asset grid (A) we compute V (A)

(and save it in the Vmax), …nd the optimal value of the control variable (C) (and save it

in the Cmax), and save the optimal end-of-period asset holdings in Amax:

//calculate last period

for(i=0;i<ASSET_GRID;i++) {

Vmax[PERIODS][i] = u(Asset[i]);

Amax[PERIODS][i] = i;

Cmax[PERIODS][i] = Asset[i];

};

4.4 Calculate all other periods recursively in a loop

All the other periods can be computed using the same methodology; only the last period

requires a special solution technique because of its particularly simple optimal policy

function. This means computing each of the remaining periods recursively until we reach

the …rst period.

//calculate the remaining periods:

for(t=PERIODS-1;t>0;t--)

{

Compute utility associated with all feasible combinations of beginning-of-period and end-

of-period assets. Consumption (cons_incom) is calculated as the di¤erence between these

two asset holdings. Since negative consumption is not allowed we introduce su¢ciently

large negative penalty for these combinations (=-99999999), and hence these combina-

tions can never be chosen as utility maximizing choices.

for(from=0;from<ASSET_GRID;from++){

double best_option_value=-99999, best_option_cons;

int best_option=0;

23

for(to=0;to<ASSET_GRID;to++){

double utility=0;

double cons_income = Asset[from]-Asset[to];

if (cons_income<0) utility=-99999999;

utility = utility + u(cons_income);

utility = utility + beta*Vmax[t+1][to];

Next we need to check if a combination gives higher utility than other combinations for

the given beginning-of-period assets. In this case the associated value and index of the

control variable is saved.

if(utility>best_option_value){

best_option_value=utility;

best_option = to;

best_option_cons = cons_income;

};

}//next to

Finally we need to save the optimal choices as well as the associated control variables for

each point on the beginning-of-period asset grid:

//save optimal values:

Vmax[t][from] = best_option_value;

Amax[t][from] = best_option;

Cmax[t][from] = best_option_cons;

}//next from

}//next period

4.5 Display results

Last we need to display the optimal choices computed above. This is done with the

following C-style printf statements:

24

//display

for(t=PERIODS;t>0;t--){

printf(’’nnnnPeriod: %i’’,t);

for(i=0;i<ASSET_GRID;i++)

printf(’’nnV%#3i(%#5.3f) = nt%#8.5f’’,t,Asset[i], Vmax[t][i]);

}

And …nish the program:

return 0;

};

4.6 Output from the program

Below is shown the output from the program: the value function for each period.

Period: 3
V 3(0.000) = 0.00000
V 3(1.000) = 1.00000
V 3(2.000) = 1.41421
V 3(3.000) = 1.73205
V 3(4.000) = 2.00000
V 3(5.000) = 2.23607

Period: 2
V 2(0.000) = 0.00000
V 2(1.000) = 1.00000
V 2(2.000) = 1.90000
V 2(3.000) = 2.31421
V 2(4.000) = 2.68701
V 2(5.000) = 3.00484

Period: 1
V 1(0.000) = 0.00000
V 1(1.000) = 1.00000
V 1(2.000) = 1.90000
V 1(3.000) = 2.71000
V 1(4.000) = 3.12421
V 1(5.000) = 3.49701

25

The numbers from the …rst period can be compared with the values in table (17) - they

are the same.

4.7 Acceleration

The program outlined above can be accelerated in various ways. Here are a few examples

that will be left to the reader to implement:

1) The points on the grid need not be equidistant as in the example above. Looking at

Figure 5 we see that the Value function at time 1 is less non-linear the higher the initial

assets are. Therefore one idea is to locate the grid-points closer for small assets holdings,

and coarser for higher levels of assets, instead of equidistant. One way of achieving this

is by using a logarithmic transformation, such that the distance between the i’th and

the i+1’th grid point is (1 + 0:05)i instead of 0:05. In the program above this is easily

implemented by altering the de…nition of the grid.

2) The computations of u (c) can done outside the loop - this would mean less evalua-

tions of the utility function. Since the grid is the same in all periods the consumption

possibilities are either 0,1,2,3,4 or 5 - hence these need only be evaluated once.

3) The grids need not be the same in each period. In this simple model where there is no

income during the life, there is no point in computing V3(M2 = 5). Why? Simply because

economic intuition about the problem tells us, that no agent would ever make this choice

if the highest grid point in the period before is 5, since this implies a zero consumption

in period 2. The table with optimal policy choices in the previous period shows that the

richest agent in period 2 will at most leave 2 units for the …nal period (in the case where

his assets are at the max: 5). This acceleration trick is of cause only useful if we need to

solve the dynamic programming more than once - or have prior information about which

values are reasonable from elsewhere.

4) In general, economic intuition can often be used to perform optimizations. For instance

one can often place upper and lower bounds on the discritized variables. Suppose in the

previous example that we know that the richest consumer will be born with an income

26

of 4 (this knowledge can come from previous analysis of the problem or just be a guess).

Since there is no interest on savings in the set-up above, this means that it does not make

sense to spend time evaluating the value function with asset holdings of 5. In the more

realistic case with interest on savings (of say 10 percent), we know that the consumer’s

asset holdings in period j cannot exceed 5£1:1j since this is the pure accumulation stream

(i.e. with no consumption in any period). This knowledge gives us an upper bound for the

discritization of assets, and calculating the valuefunction for larger asset holdings would

be a waste of clock-cycles and time.

4.8 Addendum: source code for the deterministic program
//Value function iteration in C++
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
//Compiler directive definitions:
#define PERIODS 3
#define ASSET_GRID 6
#define ASSET_MAX 5
#define ASSET_MIN 0
#define beta 0.9
//Define matrice to save the results in
double Vmax[PERIODS+1][ASSET_GRID];
int Amax[PERIODS+1][ASSET_GRID];
double Cmax[PERIODS+1][ASSET_GRID];
//define function prototype for utility function
double u(double x) {return pow(x,0.5);}
int main(){
int t,i, from, to;
//define and initialize asset grid:
double Asset[ASSET_GRID];
for(i=0;i<ASSET_GRID;i++) Asset[i] =

(double)i*(ASSET_MAX-ASSET_MIN)/(ASSET_GRID-1) + ASSET_MIN;
//calculate last period
for(i=0;i<ASSET_GRID;i++)
{ Vmax[PERIODS][i] = u(Asset[i]);
Amax[PERIODS][i] = i;
Cmax[PERIODS][i] = Asset[i]; };
//calculate the remaining periods:
for(t=PERIODS-1;t>0;t--)

27

{
for(from=0;from<ASSET_GRID;from++){
double best_option_value=-99999, best_option_cons; int best_option=0;
for(to=0;to<ASSET_GRID;to++){
double utility=0;
double cons_income = Asset[from]-Asset[to];
if (cons_income<0) utility=-99999999;
utility = utility + u(cons_income);
utility = utility + beta*Vmax[t+1][to];
if(utility>best_option_value)
{ best_option_value=utility;
best_option = to;
best_option_cons = cons_income;
};
}//next to
//save optimal values:
Vmax[t][from] = best_option_value;
Amax[t][from] = best_option;
Cmax[t][from] = best_option_cons;
}//next from
}//next period
//display
for(t=PERIODS;t>0;t--)
{
printf(’’nnnnPeriod: %i’’,t);
for(i=0;i<ASSET_GRID;i++)
printf(’’nnV%#3i(%#5.3f) = nt%#8.5f’’,t,Asset[i], Vmax[t][i]);
}
return 0;
};

28

